gusgeneris commited on
Commit
31ec2b7
1 Parent(s): 90c5ca2
Files changed (47) hide show
  1. .gitattributes +0 -35
  2. .gitignore +0 -155
  3. __pycache__/inference.cpython-310.pyc +0 -0
  4. __pycache__/mesh.cpython-310.pyc +0 -0
  5. __pycache__/pipelines.cpython-310.pyc +0 -0
  6. app.py +4 -2
  7. imagedream/__pycache__/__init__.cpython-310.pyc +0 -0
  8. imagedream/__pycache__/model_zoo.cpython-310.pyc +0 -0
  9. imagedream/ldm/__pycache__/__init__.cpython-310.pyc +0 -0
  10. imagedream/ldm/__pycache__/interface.cpython-310.pyc +0 -0
  11. imagedream/ldm/__pycache__/util.cpython-310.pyc +0 -0
  12. imagedream/ldm/models/diffusion/ddim.py +2 -2
  13. imagedream/ldm/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  14. imagedream/ldm/modules/__pycache__/attention.cpython-310.pyc +0 -0
  15. imagedream/ldm/modules/attention.py +41 -3
  16. imagedream/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
  17. imagedream/ldm/modules/diffusionmodules/__pycache__/adaptors.cpython-310.pyc +0 -0
  18. imagedream/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
  19. imagedream/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
  20. imagedream/ldm/modules/diffusionmodules/model.py +74 -25
  21. imagedream/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc +0 -0
  22. imagedream/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc +0 -0
  23. imagedream/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc +0 -0
  24. imagedream/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc +0 -0
  25. imagedream/ldm/modules/encoders/modules.py +1 -1
  26. libs/__pycache__/base_utils.cpython-310.pyc +0 -0
  27. mesh.py +2 -2
  28. model/__pycache__/__init__.cpython-310.pyc +0 -0
  29. model/archs/__pycache__/__init__.cpython-310.pyc +0 -0
  30. model/archs/__pycache__/mlp_head.cpython-310.pyc +0 -0
  31. model/archs/__pycache__/unet.cpython-310.pyc +0 -0
  32. model/archs/decoders/__pycache__/__init__.cpython-310.pyc +0 -0
  33. model/archs/decoders/__pycache__/shape_texture_net.cpython-310.pyc +0 -0
  34. model/archs/unet.py +1 -1
  35. model/crm/__pycache__/model.cpython-310.pyc +0 -0
  36. out/preprocessed_image.png +0 -0
  37. pipelines.py +1 -1
  38. run.py +5 -3
  39. util/__pycache__/__init__.cpython-310.pyc +0 -0
  40. util/__pycache__/flexicubes.cpython-310.pyc +0 -0
  41. util/__pycache__/flexicubes_geometry.cpython-310.pyc +0 -0
  42. util/__pycache__/renderer.cpython-310.pyc +0 -0
  43. util/__pycache__/tables.cpython-310.pyc +0 -0
  44. util/__pycache__/utils.cpython-310.pyc +0 -0
  45. util/flexicubes.py +1 -1
  46. util/flexicubes_geometry.py +1 -1
  47. util/renderer.py +65 -11
.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.gitignore DELETED
@@ -1,155 +0,0 @@
1
- # Byte-compiled / optimized / DLL files
2
- __pycache__/
3
- *.py[cod]
4
- *$py.class
5
-
6
- # C extensions
7
- *.so
8
-
9
- # Distribution / packaging
10
- .Python
11
- build/
12
- develop-eggs/
13
- dist/
14
- downloads/
15
- eggs/
16
- .eggs/
17
- lib/
18
- lib64/
19
- parts/
20
- sdist/
21
- var/
22
- wheels/
23
- share/python-wheels/
24
- *.egg-info/
25
- .installed.cfg
26
- *.egg
27
- MANIFEST
28
-
29
- # PyInstaller
30
- # Usually these files are written by a python script from a template
31
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
- *.manifest
33
- *.spec
34
-
35
- # Installer logs
36
- pip-log.txt
37
- pip-delete-this-directory.txt
38
-
39
- # Unit test / coverage reports
40
- htmlcov/
41
- .tox/
42
- .nox/
43
- .coverage
44
- .coverage.*
45
- .cache
46
- nosetests.xml
47
- coverage.xml
48
- *.cover
49
- *.py,cover
50
- .hypothesis/
51
- .pytest_cache/
52
- cover/
53
-
54
- # Translations
55
- *.mo
56
- *.pot
57
-
58
- # Django stuff:
59
- *.log
60
- local_settings.py
61
- db.sqlite3
62
- db.sqlite3-journal
63
-
64
- # Flask stuff:
65
- instance/
66
- .webassets-cache
67
-
68
- # Scrapy stuff:
69
- .scrapy
70
-
71
- # Sphinx documentation
72
- docs/_build/
73
-
74
- # PyBuilder
75
- .pybuilder/
76
- target/
77
-
78
- # Jupyter Notebook
79
- .ipynb_checkpoints
80
-
81
- # IPython
82
- profile_default/
83
- ipython_config.py
84
-
85
- # pyenv
86
- # For a library or package, you might want to ignore these files since the code is
87
- # intended to run in multiple environments; otherwise, check them in:
88
- # .python-version
89
-
90
- # pipenv
91
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
- # install all needed dependencies.
95
- #Pipfile.lock
96
-
97
- # poetry
98
- # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
- # This is especially recommended for binary packages to ensure reproducibility, and is more
100
- # commonly ignored for libraries.
101
- # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
- #poetry.lock
103
-
104
- # pdm
105
- # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
- #pdm.lock
107
- # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
- # in version control.
109
- # https://pdm.fming.dev/#use-with-ide
110
- .pdm.toml
111
-
112
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
- __pypackages__/
114
-
115
- # Celery stuff
116
- celerybeat-schedule
117
- celerybeat.pid
118
-
119
- # SageMath parsed files
120
- *.sage.py
121
-
122
- # Environments
123
- .env
124
- .venv
125
- env/
126
- venv/
127
- ENV/
128
- env.bak/
129
- venv.bak/
130
-
131
- # Spyder project settings
132
- .spyderproject
133
- .spyproject
134
-
135
- # Rope project settings
136
- .ropeproject
137
-
138
- # mkdocs documentation
139
- /site
140
-
141
- # mypy
142
- .mypy_cache/
143
- .dmypy.json
144
- dmypy.json
145
-
146
- # Pyre type checker
147
- .pyre/
148
-
149
- # pytype static type analyzer
150
- .pytype/
151
-
152
- # Cython debug symbols
153
- cython_debug/
154
-
155
- out/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__pycache__/inference.cpython-310.pyc ADDED
Binary file (2.78 kB). View file
 
__pycache__/mesh.cpython-310.pyc ADDED
Binary file (21.8 kB). View file
 
__pycache__/pipelines.cpython-310.pyc ADDED
Binary file (6.3 kB). View file
 
app.py CHANGED
@@ -121,12 +121,14 @@ parser.add_argument(
121
  help="config for stage2",
122
  )
123
 
124
- parser.add_argument("--device", type=str, default="cuda")
125
  args = parser.parse_args()
126
 
127
  crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
128
  specs = json.load(open("configs/specs_objaverse_total.json"))
129
- model = CRM(specs).to(args.device)
 
 
130
  model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
131
 
132
  stage1_config = OmegaConf.load(args.stage1_config).config
 
121
  help="config for stage2",
122
  )
123
 
124
+ parser.add_argument("--device", type=str, default="cpu")
125
  args = parser.parse_args()
126
 
127
  crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
128
  specs = json.load(open("configs/specs_objaverse_total.json"))
129
+ # model = CRM(specs).to(args.device)
130
+ model = CRM(specs).to("cpu")
131
+
132
  model.load_state_dict(torch.load(crm_path, map_location = args.device), strict=False)
133
 
134
  stage1_config = OmegaConf.load(args.stage1_config).config
imagedream/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
imagedream/__pycache__/model_zoo.cpython-310.pyc ADDED
Binary file (1.76 kB). View file
 
imagedream/ldm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (148 Bytes). View file
 
imagedream/ldm/__pycache__/interface.cpython-310.pyc ADDED
Binary file (6.24 kB). View file
 
imagedream/ldm/__pycache__/util.cpython-310.pyc ADDED
Binary file (6.64 kB). View file
 
imagedream/ldm/models/diffusion/ddim.py CHANGED
@@ -22,8 +22,8 @@ class DDIMSampler(object):
22
 
23
  def register_buffer(self, name, attr):
24
  if type(attr) == torch.Tensor:
25
- if attr.device != torch.device("cuda"):
26
- attr = attr.to(torch.device("cuda"))
27
  setattr(self, name, attr)
28
 
29
  def make_schedule(
 
22
 
23
  def register_buffer(self, name, attr):
24
  if type(attr) == torch.Tensor:
25
+ if attr.device != torch.device("cpu"):
26
+ attr = attr.to(torch.device("cpu"))
27
  setattr(self, name, attr)
28
 
29
  def make_schedule(
imagedream/ldm/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (156 Bytes). View file
 
imagedream/ldm/modules/__pycache__/attention.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
imagedream/ldm/modules/attention.py CHANGED
@@ -226,6 +226,43 @@ class MemoryEfficientCrossAttention(nn.Module):
226
 
227
 
228
  class BasicTransformerBlock(nn.Module):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229
  def __init__(
230
  self,
231
  dim,
@@ -239,7 +276,6 @@ class BasicTransformerBlock(nn.Module):
239
  **kwargs
240
  ):
241
  super().__init__()
242
- assert XFORMERS_IS_AVAILBLE, "xformers is not available"
243
  attn_cls = MemoryEfficientCrossAttention
244
  self.disable_self_attn = disable_self_attn
245
  self.attn1 = attn_cls(
@@ -248,7 +284,7 @@ class BasicTransformerBlock(nn.Module):
248
  dim_head=d_head,
249
  dropout=dropout,
250
  context_dim=context_dim if self.disable_self_attn else None,
251
- ) # is a self-attention if not self.disable_self_attn
252
  self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
253
  self.attn2 = attn_cls(
254
  query_dim=dim,
@@ -257,12 +293,13 @@ class BasicTransformerBlock(nn.Module):
257
  dim_head=d_head,
258
  dropout=dropout,
259
  **kwargs
260
- ) # is self-attn if context is none
261
  self.norm1 = nn.LayerNorm(dim)
262
  self.norm2 = nn.LayerNorm(dim)
263
  self.norm3 = nn.LayerNorm(dim)
264
  self.checkpoint = checkpoint
265
 
 
266
  def forward(self, x, context=None):
267
  return checkpoint(
268
  self._forward, (x, context), self.parameters(), self.checkpoint
@@ -278,6 +315,7 @@ class BasicTransformerBlock(nn.Module):
278
  x = self.attn2(self.norm2(x), context=context) + x
279
  x = self.ff(self.norm3(x)) + x
280
  return x
 
281
 
282
 
283
  class SpatialTransformer(nn.Module):
 
226
 
227
 
228
  class BasicTransformerBlock(nn.Module):
229
+ # def __init__(
230
+ # self,
231
+ # dim,
232
+ # n_heads,
233
+ # d_head,
234
+ # dropout=0.0,
235
+ # context_dim=None,
236
+ # gated_ff=True,
237
+ # checkpoint=True,
238
+ # disable_self_attn=False,
239
+ # **kwargs
240
+ # ):
241
+ # super().__init__()
242
+ # assert XFORMERS_IS_AVAILBLE, "xformers is not available"
243
+ # attn_cls = MemoryEfficientCrossAttention
244
+ # self.disable_self_attn = disable_self_attn
245
+ # self.attn1 = attn_cls(
246
+ # query_dim=dim,
247
+ # heads=n_heads,
248
+ # dim_head=d_head,
249
+ # dropout=dropout,
250
+ # context_dim=context_dim if self.disable_self_attn else None,
251
+ # ) # is a self-attention if not self.disable_self_attn
252
+ # self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
253
+ # self.attn2 = attn_cls(
254
+ # query_dim=dim,
255
+ # context_dim=context_dim,
256
+ # heads=n_heads,
257
+ # dim_head=d_head,
258
+ # dropout=dropout,
259
+ # **kwargs
260
+ # ) # is self-attn if context is none
261
+ # self.norm1 = nn.LayerNorm(dim)
262
+ # self.norm2 = nn.LayerNorm(dim)
263
+ # self.norm3 = nn.LayerNorm(dim)
264
+ # self.checkpoint = checkpoint
265
+
266
  def __init__(
267
  self,
268
  dim,
 
276
  **kwargs
277
  ):
278
  super().__init__()
 
279
  attn_cls = MemoryEfficientCrossAttention
280
  self.disable_self_attn = disable_self_attn
281
  self.attn1 = attn_cls(
 
284
  dim_head=d_head,
285
  dropout=dropout,
286
  context_dim=context_dim if self.disable_self_attn else None,
287
+ ) # Self-attention if not self.disable_self_attn
288
  self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
289
  self.attn2 = attn_cls(
290
  query_dim=dim,
 
293
  dim_head=d_head,
294
  dropout=dropout,
295
  **kwargs
296
+ ) # Cross-attention if context is provided
297
  self.norm1 = nn.LayerNorm(dim)
298
  self.norm2 = nn.LayerNorm(dim)
299
  self.norm3 = nn.LayerNorm(dim)
300
  self.checkpoint = checkpoint
301
 
302
+
303
  def forward(self, x, context=None):
304
  return checkpoint(
305
  self._forward, (x, context), self.parameters(), self.checkpoint
 
315
  x = self.attn2(self.norm2(x), context=context) + x
316
  x = self.ff(self.norm3(x)) + x
317
  return x
318
+
319
 
320
 
321
  class SpatialTransformer(nn.Module):
imagedream/ldm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (173 Bytes). View file
 
imagedream/ldm/modules/diffusionmodules/__pycache__/adaptors.cpython-310.pyc ADDED
Binary file (4.67 kB). View file
 
imagedream/ldm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc ADDED
Binary file (24.7 kB). View file
 
imagedream/ldm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
imagedream/ldm/modules/diffusionmodules/model.py CHANGED
@@ -220,39 +220,59 @@ class MemoryEfficientAttnBlock(nn.Module):
220
  self.attention_op: Optional[Any] = None
221
 
222
  def forward(self, x):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  h_ = x
224
  h_ = self.norm(h_)
225
  q = self.q(h_)
226
  k = self.k(h_)
227
  v = self.v(h_)
228
 
229
- # compute attention
230
  B, C, H, W = q.shape
231
- q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
232
 
233
- q, k, v = map(
234
- lambda t: t.unsqueeze(3)
235
- .reshape(B, t.shape[1], 1, C)
236
- .permute(0, 2, 1, 3)
237
- .reshape(B * 1, t.shape[1], C)
238
- .contiguous(),
239
- (q, k, v),
240
- )
241
- out = xformers.ops.memory_efficient_attention(
242
- q, k, v, attn_bias=None, op=self.attention_op
243
- )
244
 
245
- out = (
246
- out.unsqueeze(0)
247
- .reshape(B, 1, out.shape[1], C)
248
- .permute(0, 2, 1, 3)
249
- .reshape(B, out.shape[1], C)
250
- )
251
- out = rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
252
  out = self.proj_out(out)
253
  return x + out
254
 
255
-
256
  class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
257
  def forward(self, x, context=None, mask=None):
258
  b, c, h, w = x.shape
@@ -263,6 +283,29 @@ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
263
 
264
 
265
  def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266
  assert attn_type in [
267
  "vanilla",
268
  "vanilla-xformers",
@@ -270,16 +313,22 @@ def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
270
  "linear",
271
  "none",
272
  ], f"attn_type {attn_type} unknown"
273
- if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
 
 
274
  attn_type = "vanilla-xformers"
 
 
 
275
  print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
 
276
  if attn_type == "vanilla":
277
  assert attn_kwargs is None
278
- return AttnBlock(in_channels)
279
  elif attn_type == "vanilla-xformers":
280
  print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
281
- return MemoryEfficientAttnBlock(in_channels)
282
- elif type == "memory-efficient-cross-attn":
283
  attn_kwargs["query_dim"] = in_channels
284
  return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
285
  elif attn_type == "none":
 
220
  self.attention_op: Optional[Any] = None
221
 
222
  def forward(self, x):
223
+ # h_ = x
224
+ # h_ = self.norm(h_)
225
+ # q = self.q(h_)
226
+ # k = self.k(h_)
227
+ # v = self.v(h_)
228
+
229
+ # # compute attention
230
+ # B, C, H, W = q.shape
231
+ # q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
232
+
233
+ # q, k, v = map(
234
+ # lambda t: t.unsqueeze(3)
235
+ # .reshape(B, t.shape[1], 1, C)
236
+ # .permute(0, 2, 1, 3)
237
+ # .reshape(B * 1, t.shape[1], C)
238
+ # .contiguous(),
239
+ # (q, k, v),
240
+ # )
241
+ # out = xformers.ops.memory_efficient_attention(
242
+ # q, k, v, attn_bias=None, op=self.attention_op
243
+ # )
244
+
245
+ # out = (
246
+ # out.unsqueeze(0)
247
+ # .reshape(B, 1, out.shape[1], C)
248
+ # .permute(0, 2, 1, 3)
249
+ # .reshape(B, out.shape[1], C)
250
+ # )
251
+ # out = rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
252
+ # out = self.proj_out(out)
253
+ # return x + out
254
  h_ = x
255
  h_ = self.norm(h_)
256
  q = self.q(h_)
257
  k = self.k(h_)
258
  v = self.v(h_)
259
 
260
+ # Compute attention
261
  B, C, H, W = q.shape
262
+ q, k, v = map(lambda t: rearrange(t, "b c h w -> b (h w) c"), (q, k, v))
263
 
264
+ if torch.cuda.is_available(): # Use xformers only if GPU is available
265
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
266
+ else:
267
+ # CPU-friendly alternative for attention
268
+ attn_weights = torch.einsum('bqc,bkc->bqk', q, k) # Simple dot-product attention
269
+ attn_weights = torch.softmax(attn_weights, dim=-1)
270
+ out = torch.einsum('bqk,bvc->bqc', attn_weights, v)
 
 
 
 
271
 
272
+ out = rearrange(out, "b (h w) c -> b c h w", h=H, w=W)
 
 
 
 
 
 
273
  out = self.proj_out(out)
274
  return x + out
275
 
 
276
  class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
277
  def forward(self, x, context=None, mask=None):
278
  b, c, h, w = x.shape
 
283
 
284
 
285
  def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
286
+ # assert attn_type in [
287
+ # "vanilla",
288
+ # "vanilla-xformers",
289
+ # "memory-efficient-cross-attn",
290
+ # "linear",
291
+ # "none",
292
+ # ], f"attn_type {attn_type} unknown"
293
+ # if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
294
+ # attn_type = "vanilla-xformers"
295
+ # print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
296
+ # if attn_type == "vanilla":
297
+ # assert attn_kwargs is None
298
+ # return AttnBlock(in_channels)
299
+ # elif attn_type == "vanilla-xformers":
300
+ # print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
301
+ # return MemoryEfficientAttnBlock(in_channels)
302
+ # elif type == "memory-efficient-cross-attn":
303
+ # attn_kwargs["query_dim"] = in_channels
304
+ # return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
305
+ # elif attn_type == "none":
306
+ # return nn.Identity(in_channels)
307
+ # else:
308
+ # raise NotImplementedError()
309
  assert attn_type in [
310
  "vanilla",
311
  "vanilla-xformers",
 
313
  "linear",
314
  "none",
315
  ], f"attn_type {attn_type} unknown"
316
+
317
+ # Comprobar si GPU está disponible y evitar xformers si no lo está
318
+ if torch.cuda.is_available() and XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
319
  attn_type = "vanilla-xformers"
320
+ else:
321
+ print("Using CPU-based attention as xformers or GPU is not available.")
322
+
323
  print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
324
+
325
  if attn_type == "vanilla":
326
  assert attn_kwargs is None
327
+ return AttnBlock(in_channels) # Atención estándar para CPU
328
  elif attn_type == "vanilla-xformers":
329
  print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
330
+ return MemoryEfficientAttnBlock(in_channels) # Atención optimizada con xformers
331
+ elif attn_type == "memory-efficient-cross-attn":
332
  attn_kwargs["query_dim"] = in_channels
333
  return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
334
  elif attn_type == "none":
imagedream/ldm/modules/distributions/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (170 Bytes). View file
 
imagedream/ldm/modules/distributions/__pycache__/distributions.cpython-310.pyc ADDED
Binary file (3.77 kB). View file
 
imagedream/ldm/modules/encoders/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (165 Bytes). View file
 
imagedream/ldm/modules/encoders/__pycache__/modules.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
imagedream/ldm/modules/encoders/modules.py CHANGED
@@ -106,7 +106,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
106
  def __init__(
107
  self,
108
  version="openai/clip-vit-large-patch14",
109
- device="cuda",
110
  max_length=77,
111
  freeze=True,
112
  layer="last",
 
106
  def __init__(
107
  self,
108
  version="openai/clip-vit-large-patch14",
109
+ device="cpu",
110
  max_length=77,
111
  freeze=True,
112
  layer="last",
libs/__pycache__/base_utils.cpython-310.pyc ADDED
Binary file (3.27 kB). View file
 
mesh.py CHANGED
@@ -159,7 +159,7 @@ class Mesh:
159
 
160
  # device
161
  if device is None:
162
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
163
 
164
  mesh.device = device
165
 
@@ -331,7 +331,7 @@ class Mesh:
331
 
332
  # device
333
  if device is None:
334
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
335
 
336
  mesh.device = device
337
 
 
159
 
160
  # device
161
  if device is None:
162
+ device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
163
 
164
  mesh.device = device
165
 
 
331
 
332
  # device
333
  if device is None:
334
+ device = torch.device("cpu" if torch.cuda.is_available() else "cpu")
335
 
336
  mesh.device = device
337
 
model/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (182 Bytes). View file
 
model/archs/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (145 Bytes). View file
 
model/archs/__pycache__/mlp_head.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
model/archs/__pycache__/unet.cpython-310.pyc ADDED
Binary file (1.54 kB). View file
 
model/archs/decoders/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (154 Bytes). View file
 
model/archs/decoders/__pycache__/shape_texture_net.cpython-310.pyc ADDED
Binary file (1.84 kB). View file
 
model/archs/unet.py CHANGED
@@ -40,7 +40,7 @@ class UNetPP(nn.Module):
40
  ),
41
  )
42
 
43
- self.unet.enable_xformers_memory_efficient_attention()
44
  if in_channels > 12:
45
  self.learned_plane = torch.nn.parameter.Parameter(torch.zeros([1,in_channels-12,256,256*3]))
46
 
 
40
  ),
41
  )
42
 
43
+ # self.unet.enable_xformers_memory_efficient_attention()
44
  if in_channels > 12:
45
  self.learned_plane = torch.nn.parameter.Parameter(torch.zeros([1,in_channels-12,256,256*3]))
46
 
model/crm/__pycache__/model.cpython-310.pyc ADDED
Binary file (6.09 kB). View file
 
out/preprocessed_image.png ADDED
pipelines.py CHANGED
@@ -15,7 +15,7 @@ class TwoStagePipeline(object):
15
  stage2_model_config,
16
  stage1_sampler_config,
17
  stage2_sampler_config,
18
- device="cuda",
19
  dtype=torch.float16,
20
  resize_rate=1,
21
  ) -> None:
 
15
  stage2_model_config,
16
  stage1_sampler_config,
17
  stage2_sampler_config,
18
+ device="cpu",
19
  dtype=torch.float16,
20
  resize_rate=1,
21
  ) -> None:
run.py CHANGED
@@ -125,8 +125,10 @@ if __name__ == "__main__":
125
 
126
  crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
127
  specs = json.load(open("configs/specs_objaverse_total.json"))
128
- model = CRM(specs).to("cuda")
129
- model.load_state_dict(torch.load(crm_path, map_location = "cuda"), strict=False)
 
 
130
 
131
  stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config
132
  stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config
@@ -156,5 +158,5 @@ if __name__ == "__main__":
156
  Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png")
157
  Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png")
158
 
159
- glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cuda")
160
  shutil.copy(obj_path, args.outdir+"output3d.zip")
 
125
 
126
  crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
127
  specs = json.load(open("configs/specs_objaverse_total.json"))
128
+ # model = CRM(specs).to("cuda")
129
+ model = CRM(specs).to("cpu")
130
+
131
+ model.load_state_dict(torch.load(crm_path, map_location = "cpu"), strict=False)
132
 
133
  stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config
134
  stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config
 
158
  Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png")
159
  Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png")
160
 
161
+ glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cpu")
162
  shutil.copy(obj_path, args.outdir+"output3d.zip")
util/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (138 Bytes). View file
 
util/__pycache__/flexicubes.cpython-310.pyc ADDED
Binary file (22.6 kB). View file
 
util/__pycache__/flexicubes_geometry.cpython-310.pyc ADDED
Binary file (3.7 kB). View file
 
util/__pycache__/renderer.cpython-310.pyc ADDED
Binary file (1.56 kB). View file
 
util/__pycache__/tables.cpython-310.pyc ADDED
Binary file (24 kB). View file
 
util/__pycache__/utils.cpython-310.pyc ADDED
Binary file (7.07 kB). View file
 
util/flexicubes.py CHANGED
@@ -64,7 +64,7 @@ class FlexiCubes:
64
  The scale of weights in FlexiCubes. Should be between 0 and 1.
65
  """
66
 
67
- def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99):
68
 
69
  self.device = device
70
  self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
 
64
  The scale of weights in FlexiCubes. Should be between 0 and 1.
65
  """
66
 
67
+ def __init__(self, device="cpu", qef_reg_scale=1e-3, weight_scale=0.99):
68
 
69
  self.device = device
70
  self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
util/flexicubes_geometry.py CHANGED
@@ -31,7 +31,7 @@ def get_center_boundary_index(grid_res, device):
31
  ###############################################################################
32
  class FlexiCubesGeometry(object):
33
  def __init__(
34
- self, grid_res=64, scale=2.0, device='cuda', renderer=None,
35
  render_type='neural_render', args=None):
36
  super(FlexiCubesGeometry, self).__init__()
37
  self.grid_res = grid_res
 
31
  ###############################################################################
32
  class FlexiCubesGeometry(object):
33
  def __init__(
34
+ self, grid_res=64, scale=2.0, device='cpu', renderer=None,
35
  render_type='neural_render', args=None):
36
  super(FlexiCubesGeometry, self).__init__()
37
  self.grid_res = grid_res
util/renderer.py CHANGED
@@ -1,7 +1,56 @@
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import torch
3
  import torch.nn as nn
4
- import nvdiffrast.torch as dr
5
  from util.flexicubes_geometry import FlexiCubesGeometry
6
 
7
  class Renderer(nn.Module):
@@ -12,18 +61,19 @@ class Renderer(nn.Module):
12
  self.camera_angle_num = camera_angle_num
13
  self.scale = scale
14
  self.geo_type = geo_type
15
- self.glctx = dr.RasterizeCudaContext()
 
 
16
 
17
  if self.geo_type == "flex":
18
- self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
19
-
20
- def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
21
 
 
22
  results = {}
23
 
24
  deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
25
  if self.geo_type == "flex":
26
- deform = deform *0.5
27
 
28
  v_deformed = verts + deform
29
 
@@ -31,13 +81,17 @@ class Renderer(nn.Module):
31
  faces_list = []
32
  reg_list = []
33
  n_shape = verts.shape[0]
34
- for i in range(n_shape):
35
- verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
36
- with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
 
 
 
37
 
38
  verts_list.append(verts_i)
39
  faces_list.append(faces_i)
40
- reg_list.append(reg_i)
 
41
  verts = verts_list
42
  faces = faces_list
43
 
@@ -46,4 +100,4 @@ class Renderer(nn.Module):
46
  results["flex_surf_loss"] = flexicubes_surface_reg
47
  results["flex_weight_loss"] = flexicubes_weight_reg
48
 
49
- return results, verts, faces
 
1
 
2
+ # import torch
3
+ # import torch.nn as nn
4
+ # import nvdiffrast.torch as dr
5
+ # from util.flexicubes_geometry import FlexiCubesGeometry
6
+
7
+ # class Renderer(nn.Module):
8
+ # def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
9
+ # super().__init__()
10
+
11
+ # self.tet_grid_size = tet_grid_size
12
+ # self.camera_angle_num = camera_angle_num
13
+ # self.scale = scale
14
+ # self.geo_type = geo_type
15
+ # self.glctx = dr.RasterizeCudaContext()
16
+
17
+ # if self.geo_type == "flex":
18
+ # self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
19
+
20
+ # def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
21
+
22
+ # results = {}
23
+
24
+ # deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
25
+ # if self.geo_type == "flex":
26
+ # deform = deform *0.5
27
+
28
+ # v_deformed = verts + deform
29
+
30
+ # verts_list = []
31
+ # faces_list = []
32
+ # reg_list = []
33
+ # n_shape = verts.shape[0]
34
+ # for i in range(n_shape):
35
+ # verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
36
+ # with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
37
+
38
+ # verts_list.append(verts_i)
39
+ # faces_list.append(faces_i)
40
+ # reg_list.append(reg_i)
41
+ # verts = verts_list
42
+ # faces = faces_list
43
+
44
+ # flexicubes_surface_reg = torch.cat(reg_list).mean()
45
+ # flexicubes_weight_reg = (weight ** 2).mean()
46
+ # results["flex_surf_loss"] = flexicubes_surface_reg
47
+ # results["flex_weight_loss"] = flexicubes_weight_reg
48
+
49
+ # return results, verts, faces
50
+
51
  import torch
52
  import torch.nn as nn
53
+ # import nvdiffrast.torch as dr # Comentado porque no se usará en CPU
54
  from util.flexicubes_geometry import FlexiCubesGeometry
55
 
56
  class Renderer(nn.Module):
 
61
  self.camera_angle_num = camera_angle_num
62
  self.scale = scale
63
  self.geo_type = geo_type
64
+
65
+ # Eliminar el contexto de GPU y usar una alternativa o desactivarlo
66
+ # self.glctx = dr.RasterizeCudaContext() # Comentado porque se usa GPU
67
 
68
  if self.geo_type == "flex":
69
+ self.flexicubes = FlexiCubesGeometry(grid_res=self.tet_grid_size)
 
 
70
 
71
+ def forward(self, data, sdf, deform, verts, tets, training=False, weight=None):
72
  results = {}
73
 
74
  deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
75
  if self.geo_type == "flex":
76
+ deform = deform * 0.5
77
 
78
  v_deformed = verts + deform
79
 
 
81
  faces_list = []
82
  reg_list = []
83
  n_shape = verts.shape[0]
84
+ for i in range(n_shape):
85
+ # Aquí deberás adaptar el uso de FlexiCubesGeometry para que funcione sin GPU.
86
+ verts_i, faces_i, reg_i = self.flexicubes.get_mesh(
87
+ v_deformed[i], sdf[i].squeeze(dim=-1),
88
+ with_uv=False, indices=tets, weight_n=weight[i], is_training=training
89
+ )
90
 
91
  verts_list.append(verts_i)
92
  faces_list.append(faces_i)
93
+ reg_list.append(reg_i)
94
+
95
  verts = verts_list
96
  faces = faces_list
97
 
 
100
  results["flex_surf_loss"] = flexicubes_surface_reg
101
  results["flex_weight_loss"] = flexicubes_weight_reg
102
 
103
+ return results, verts, faces