|
import gradio as gr |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
from peft import PeftModel, PeftConfig |
|
|
|
|
|
MODEL_NAME = "IlyaGusev/llama_7b_ru_turbo_alpaca_lora" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
config = PeftConfig.from_pretrained(MODEL_NAME) |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
load_in_8bit=True, |
|
device_map="auto" |
|
) |
|
model = PeftModel.from_pretrained(model, MODEL_NAME) |
|
model.eval() |
|
|
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"Task: {instruction}\nInput: {input}\nOutput:" |
|
return f"Task: {instruction}\n\nOutput:" |
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=1.0, |
|
top_p=1.0, |
|
top_k=40, |
|
num_beams=3, |
|
max_new_tokens=256, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(model.device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s, skip_special_tokens=True) |
|
return output.strip() |
|
|
|
|
|
g = gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox( |
|
lines=2, label="Task", placeholder="Why is grass green?" |
|
), |
|
gr.components.Textbox(lines=2, label="Input", placeholder="None"), |
|
gr.components.Slider(minimum=0, maximum=2, value=1.0, label="Temperature"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.8, label="Top p"), |
|
gr.components.Slider(minimum=0, maximum=100, value=40, label="Top k"), |
|
gr.components.Slider(minimum=1, maximum=5, step=1, value=4, label="Beams"), |
|
gr.components.Slider( |
|
minimum=1, maximum=256, step=1, value=256, label="Max tokens" |
|
), |
|
], |
|
outputs=[ |
|
gr.inputs.Textbox( |
|
lines=5, |
|
label="Output", |
|
) |
|
], |
|
title="LLaMA 7B Ru Turbo Alpaca", |
|
description="", |
|
) |
|
|
|
|
|
g.queue(concurrency_count=1) |
|
g.launch() |
|
|