Spaces:
Runtime error
Runtime error
File size: 8,175 Bytes
cb2b5cd eeedeab cb2b5cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from torch import nn
from transformers import CanineModel, CanineForTokenClassification, CaninePreTrainedModel, CanineTokenizer
from transformers.modeling_outputs import TokenClassifierOutput
import gradio as gr
arabic_to_hebrew = {
# regular letters
"ا": "א", "أ": "א", "إ": "א", "ء": "א", "ئ": "א", "ؤ": "א",
"آ": "אא", "ى": "א", "ب": "ב", "ت": "ת", "ث": "ת'", "ج": "ג'",
"ح": "ח", "خ": "ח'", "د": "ד", "ذ": "ד'", "ر": "ר", "ز": "ז",
"س": "ס", "ش": "ש", "ص": "צ", "ض": "צ'", "ط": "ט", "ظ": "ט'",
"ع": "ע", "غ": "ע'", "ف": "פ", "ق": "ק", "ك": "כ", "ل": "ל",
"م": "מ", "ن": "נ", "ه": "ה", "و": "ו", "ي": "י", "ة": "ה",
# special characters
"،": ",", "َ": "ַ", "ُ": "ֻ", "ِ": "ִ",
}
final_letters = {
"ن": "ן", "م": "ם", "ص": "ץ", "ض": "ץ'", "ف": "ף",
}
def to_taatik(arabic):
taatik = []
for index, letter in enumerate(arabic):
if (
(index == len(arabic) - 1 or arabic[index + 1] in {" ", ".", "،"}) and
letter in final_letters
):
taatik.append(final_letters[letter])
elif letter not in arabic_to_hebrew:
taatik.append(letter)
else:
taatik.append(arabic_to_hebrew[letter])
return taatik
class TaatikModel(CaninePreTrainedModel):
# based on CaninePreTrainedModel
# slightly modified for multilabel classification
def __init__(self, config, num_labels=7):
# Note: one label for each nikud type, plus one for the deletion flag
super().__init__(config)
config.num_labels = num_labels
self.num_labels = config.num_labels
self.canine = CanineModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
self.criterion = nn.BCEWithLogitsLoss()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
):
outputs = self.canine(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# print(logits)
# print("-----------")
# print(labels)
loss = self.criterion(logits, labels)
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
# model = TashkeelModel.from_pretrained("google/canine-c")
tokenizer = CanineTokenizer.from_pretrained("google/canine-s")
# model = TaatikModel.from_pretrained("google/canine-s")
# model = TaatikModel.from_pretrained("./checkpoint-19034/")
model = TaatikModel.from_pretrained("guymorlan/Arabic2Taatik")
def convert_nikkud_to_harakat(nikkud):
labels = []
if "SHADDA" in nikkud:
labels.append("SHADDA")
if "TSERE" in nikkud:
labels.append("KASRA")
if "HOLAM" in nikkud:
labels.append("DAMMA")
if "PATACH" in nikkud:
labels.append("FATHA")
if "SHVA" in nikkud:
labels.append("SUKUN")
if "KUBUTZ" in nikkud:
labels.append("DAMMA")
if "HIRIQ" in nikkud:
labels.append("KASRA")
return labels
def convert_binary_to_labels(binary_labels):
labels = []
if binary_labels[0] == 1:
labels.append("SHADDA")
if binary_labels[1] == 1:
labels.append("TSERE")
if binary_labels[2] == 1:
labels.append("HOLAM")
if binary_labels[3] == 1:
labels.append("PATACH")
if binary_labels[4] == 1:
labels.append("SHVA")
if binary_labels[5] == 1:
labels.append("KUBUTZ")
if binary_labels[6] == 1:
labels.append("HIRIQ")
return labels
def convert_label_names_to_chars(label):
if label == "SHADDA":
return "ّ"
if label == "TSERE":
return "ֵ"
if label == "HOLAM":
return "ֹ"
if label == "PATACH":
return "ַ"
if label == "SHVA":
return "ְ"
if label == "KUBUTZ":
return "ֻ"
if label == "HIRIQ":
return "ִ"
# for these, return arabic harakat
if label == "DAMMA":
return "ُ"
if label == "KASRA":
return "ِ"
if label == "FATHA":
return "َ"
if label == "SUKUN":
return "ْ"
return ""
def predict(input, prefix = "P "):
print(input)
input_tok = tokenizer(prefix+input, return_tensors="pt")
print(input_tok)
outputs = model(**input_tok)
print(outputs)
labels = outputs.logits.sigmoid().round().int()
labels = labels.tolist()[0][3:-1]
print(labels)
labels_hebrew = [convert_binary_to_labels(x) for x in labels]
labels_arabic = [convert_nikkud_to_harakat(x) for x in labels_hebrew]
print(f"labels_hebrew: {labels_hebrew}")
print(f"labels_arabic: {labels_arabic}")
hebrew = [[x] for x in to_taatik(input)]
print(hebrew)
arabic = [[x] for x in input]
print(arabic)
print(f"len hebrew: {len(hebrew)}")
print(f"len arabic: {len(arabic)}")
print(f"len labels_hebrew: {len(labels_hebrew)}")
print(f"len labels_arabic: {len(labels_arabic)}")
print(f"labels: {labels}")
print(f"labels_hebrew: {labels_hebrew}")
print(f"labels_arabic: {labels_arabic}")
for i in range(len(hebrew)):
hebrew[i].extend([convert_label_names_to_chars(x) for x in labels_hebrew[i]])
arabic[i].extend([convert_label_names_to_chars(x) for x in labels_arabic[i]])
hebrew = ["".join(x) for x in hebrew]
arabic = ["".join(x) for x in arabic]
# loop over hebrew, if there is a ' in the second position move it to last position
for i in range(len(hebrew)):
if len(hebrew[i]) > 1 and hebrew[i][1] == "'":
hebrew[i] = hebrew[i][0] + hebrew[i][2:] + hebrew[i][1]
hebrew = "".join(hebrew)
arabic = "".join(arabic)
return f"<p dir='rtl' style='font-size: 1.5em; font-family: Arial Unicode MS;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Noto;'>{arabic}</p>"
font = "Arial Unicode MS, Tahoma, sans-serif"
return f"<p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: {font};'>{arabic}</p>"
return f"<p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em; font-family: Heebo;'>{arabic}</p>"
# return f"<p dir='rtl' style='font-size: 1.5em'>{hebrew}</p><p dir='rtl' style='font-size: 1.5em'>{arabic}</p>"
font_url = "<link href='https://fonts.googleapis.com/css2?family=Heebo&display=swap' rel='stylesheet'>"
with gr.Blocks(theme=gr.themes.Soft(), title="Ammiya Diacritizer") as demo:
gr.HTML("<h2><span style='color: #2563eb'>Colloquial Arabic</span></h2> Diacritizer and Hebrew Transliterator" + font_url)
with gr.Row():
with gr.Column():
input = gr.Textbox(label="Input", placeholder="Enter Arabic text", lines=1)
gr.Examples(["بديش اروح معك"], input)
btn = gr.Button(label="Analyze")
with gr.Column():
with gr.Box():
html = gr.HTML()
btn.click(predict, inputs=[input], outputs=[html])
input.submit(predict, inputs = [input], outputs=[html])
demo.load()
demo.launch()
|