File size: 8,362 Bytes
b596e22
471e971
 
 
 
b596e22
471e971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e447a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
import torch
import torchvision.transforms as T
from PIL import Image

from torchvision.transforms.functional import InterpolationMode
# Define the path to your model
path = 'h2oai/h2o-mississippi-2b'

# image preprocesing
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio


def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    new_target_ratios = []
    if prior_aspect_ratio is not None:
        for i in target_ratios:
            if prior_aspect_ratio[0]%i[0] != 0 and prior_aspect_ratio[1]%i[1] != 0:
                new_target_ratios.append(i)
            else:
                continue

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images
def load_image1(image_file, input_size=448, min_num=1, max_num=12):
    if isinstance(image_file, str):
        image = Image.open(image_file).convert('RGB')
    else:
        image = image_file
    transform = build_transform(input_size=input_size)
    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values, target_aspect_ratio

def load_image2(image_file, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
    
    if isinstance(image_file, str):
        image = Image.open(image_file).convert('RGB')
    else:
        image = image_file
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def load_image_msac(file_name):
    pixel_values, target_aspect_ratio = load_image1(file_name, min_num=1, max_num=6)
    pixel_values = pixel_values.to(torch.bfloat16).cuda()
    pixel_values2 = load_image2(file_name, min_num=3, max_num=6, target_aspect_ratio=target_aspect_ratio)
    pixel_values2 = pixel_values2.to(torch.bfloat16).cuda()
    pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0)
    return pixel_values
# Load the model and tokenizer
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(
    path, 
    trust_remote_code=True, 
    use_fast=False
)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.eos_token = "<|end|>"
model.generation_config.pad_token_id = tokenizer.pad_token_id


def inference(image, prompt):
    # Check if both image and prompt are provided
    if image is None or prompt.strip() == "":
        return "Please provide both an image and a prompt."
    
    # Process the image and get pixel_values
    pixel_values = load_image_msac(image)

    # Set generation config
    generation_config = dict(
        num_beams=1,
        max_new_tokens=2048,
        do_sample=False,
    )

    # Generate the response
    response = model.chat(
        tokenizer, 
        pixel_values, 
        prompt, 
        generation_config
    )

    return response

# Build the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("H2O-Mississippi")

    with gr.Row():
        image_input = gr.Image(type="pil", label="Upload an Image")
        prompt_input = gr.Textbox(label="Enter your prompt here")

    response_output = gr.Textbox(label="Model Response")

    with gr.Row():
        submit_button = gr.Button("Submit")
        clear_button = gr.Button("Clear")

    # When the submit button is clicked, call the inference function
    submit_button.click(
        fn=inference, 
        inputs=[image_input, prompt_input], 
        outputs=response_output
    )

    # Define the clear button action
    def clear_all():
        return None, "", ""

    clear_button.click(
        fn=clear_all, 
        inputs=None, 
        outputs=[image_input, prompt_input, response_output]
    )

demo.launch()