Spaces:
Running
on
A10G
Running
on
A10G
File size: 8,502 Bytes
b596e22 471e971 b596e22 471e971 b596e22 471e971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
import torch
import torchvision.transforms as T
from PIL import Image
import time
import os, sys
import json
import re
from tqdm import tqdm
import pandas as pd
from torchvision.transforms.functional import InterpolationMode
# Define the path to your model
path = 'h2oai/h2o-mississippi-2b'
# image preprocesing
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
start_pre = time.time()
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
if prior_aspect_ratio is not None:
for i in target_ratios:
if prior_aspect_ratio[0]%i[0] != 0 and prior_aspect_ratio[1]%i[1] != 0:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image1(image_file, input_size=448, min_num=1, max_num=12):
if isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
else:
image = image_file
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio
def load_image2(image_file, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
if isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
else:
image = image_file
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def load_image_msac(file_name):
pixel_values, target_aspect_ratio = load_image1(file_name, min_num=1, max_num=6)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
pixel_values2 = load_image2(file_name, min_num=3, max_num=6, target_aspect_ratio=target_aspect_ratio)
pixel_values2 = pixel_values2.to(torch.bfloat16).cuda()
pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0)
return pixel_values
# Load the model and tokenizer
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=True,
use_fast=False
)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.eos_token = "<|end|>"
model.generation_config.pad_token_id = tokenizer.pad_token_id
def inference(image, prompt):
# Check if both image and prompt are provided
if image is None or prompt.strip() == "":
return "Please provide both an image and a prompt."
# Process the image and get pixel_values
pixel_values = load_image_msac(image)
# Set generation config
generation_config = dict(
num_beams=1,
max_new_tokens=2048,
do_sample=False,
)
# Generate the response
response = model.chat(
tokenizer,
pixel_values,
prompt,
generation_config
)
return response
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("H2O-Mississippi")
with gr.Row():
image_input = gr.Image(type="pil", label="Upload an Image")
prompt_input = gr.Textbox(label="Enter your prompt here")
response_output = gr.Textbox(label="Model Response")
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
# When the submit button is clicked, call the inference function
submit_button.click(
fn=inference,
inputs=[image_input, prompt_input],
outputs=response_output
)
# Define the clear button action
def clear_all():
return None, "", ""
clear_button.click(
fn=clear_all,
inputs=None,
outputs=[image_input, prompt_input, response_output]
)
demo.launch(share=True)
|