Spaces:
Running
on
A10G
Running
on
A10G
File size: 12,611 Bytes
b596e22 471e971 e809d4e b596e22 e809d4e 471e971 39b759d e809d4e cbfb2ad 471e971 1757eeb 471e971 39b759d 471e971 39b759d 471e971 e809d4e 471e971 e809d4e 471e971 e809d4e 471e971 e809d4e 471e971 e809d4e 471e971 e809d4e 471e971 e809d4e 471e971 1757eeb 471e971 e809d4e 471e971 e809d4e 1757eeb e809d4e 471e971 1757eeb 471e971 1757eeb 471e971 e809d4e 1757eeb e809d4e 471e971 e809d4e 471e971 1e447a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
import torch
import torchvision.transforms as T
from PIL import Image
import logging
logging.basicConfig(level=logging.INFO)
from torchvision.transforms.functional import InterpolationMode
import os
from huggingface_hub import login
hf_token = os.environ.get('hf_token', None)
# Define the path to your model
path = "h2oai/h2o-mississippi-2b"
# image preprocesing
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
if prior_aspect_ratio is not None:
for i in target_ratios:
if prior_aspect_ratio[0]%i[0] != 0 and prior_aspect_ratio[1]%i[1] != 0:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image1(image_file, input_size=448, min_num=1, max_num=12):
if isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
else:
image = image_file
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio
def load_image2(image_file, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
if isinstance(image_file, str):
image = Image.open(image_file).convert('RGB')
else:
image = image_file
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def load_image_msac(file_name):
pixel_values, target_aspect_ratio = load_image1(file_name, min_num=1, max_num=6)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
pixel_values2 = load_image2(file_name, min_num=3, max_num=6, target_aspect_ratio=target_aspect_ratio)
pixel_values2 = pixel_values2.to(torch.bfloat16).cuda()
pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0)
return pixel_values
# Load the model and tokenizer
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_auth_token=hf_token
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
path,
trust_remote_code=True,
use_fast=False,
use_auth_token=hf_token
)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.eos_token = "<|end|>"
model.generation_config.pad_token_id = tokenizer.pad_token_id
def inference(image, user_message, temperature, top_p, max_new_tokens, chatbot,state, image_state):
# if image is provided, store it in image_state:
if chatbot is None:
chatbot = []
if image is not None:
image_state = load_image_msac(image)
else:
# If image_state is None, then no image has been provided yet
if image_state is None:
chatbot.append(("System", "Please provide an image to start the conversation."))
return chatbot, state, image_state, ""
# Initialize history (state) if it's None
if state is None:
state = None # model.chat function handles None as empty history
# Append user message to chatbot
chatbot.append((user_message, None))
# Set generation config
do_sample = (float(temperature) != 0.0)
generation_config = dict(
num_beams=1,
max_new_tokens=int(max_new_tokens),
do_sample=do_sample,
temperature= float(temperature),
top_p= float(top_p),
)
# Call model.chat with history
response_text, new_state = model.chat(
tokenizer,
image_state,
user_message,
generation_config=generation_config,
history=state,
return_history=True
)
# update the satet with new_state
state = new_state
# Update chatbot with the model's response
chatbot[-1] = (user_message, response_text)
return chatbot, state, image_state, ""
def regenerate_response(chatbot, temperature, top_p, max_new_tokens, state, image_state):
# Check if there is a previous user message
if chatbot is None or len(chatbot) == 0:
chatbot = []
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
return chatbot, state, image_state
# Check if there is a previous user message
if state is None or image_state is None or len(state) == 0:
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
return chatbot, state, image_state
# Get the last user message
last_user_message, last_response = chatbot[-1]
state = state[:-1] # Remove last assistant's response from history
if len(state) == 0:
state = None
# Set generation config
do_sample = (float(temperature) != 0.0)
generation_config = dict(
num_beams=1,
max_new_tokens=int(max_new_tokens),
do_sample=do_sample,
temperature= float(temperature),
top_p= float(top_p),
)
# Regenerate the response
response_text, new_state = model.chat(
tokenizer,
image_state,
last_user_message,
generation_config=generation_config,
history=state, # Exclude last assistant's response
return_history=True
)
# Update the state with new_state
state = new_state
# Update chatbot with the regenerated response
chatbot.append((last_user_message, response_text))
return chatbot, state, image_state
def clear_all():
return [], None, None, None # Clear chatbot, state, image_state, image_input
# Build the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# **H2O-Mississippi**")
state= gr.State()
image_state = gr.State()
with gr.Row():
# First column with image input
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="Upload an Image")
# Second column with chatbot and user input
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="Conversation")
user_input = gr.Textbox(label="What is your question", placeholder="Type your message here")
with gr.Accordion('Parameters', open=False):
with gr.Row():
temperature_input = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.0,
interactive=True,
label="Temperature")
top_p_input = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
interactive=True,
label="Top P")
max_new_tokens_input = gr.Slider(
minimum=0,
maximum=4096,
step=64,
value=1024,
interactive=True,
label="Max New Tokens (default: 1024)"
)
with gr.Row():
submit_button = gr.Button("Submit")
regenerate_button = gr.Button("Regenerate")
clear_button = gr.Button("Clear")
# When the submit button is clicked, call the inference function
submit_button.click(
fn=inference,
inputs=[image_input, user_input, temperature_input, top_p_input, max_new_tokens_input, chatbot, state, image_state],
outputs=[chatbot, state, image_state, user_input]
)
# When the regenerate button is clicked, re-run the last inference
regenerate_button.click(
fn=regenerate_response,
inputs=[chatbot, temperature_input, top_p_input,max_new_tokens_input, state, image_state],
outputs=[chatbot, state, image_state]
)
clear_button.click(
fn=clear_all,
inputs=None,
outputs=[chatbot, state, image_state, image_input]
)
demo.launch()
|