File size: 12,611 Bytes
b596e22
471e971
 
 
 
e809d4e
b596e22
e809d4e
471e971
39b759d
 
 
 
e809d4e
cbfb2ad
471e971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757eeb
471e971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39b759d
 
471e971
 
 
 
 
39b759d
 
471e971
 
 
 
 
 
e809d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e971
 
e809d4e
 
 
471e971
 
e809d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
471e971
e809d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e971
e809d4e
 
 
 
 
 
471e971
e809d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e971
e809d4e
 
471e971
1757eeb
471e971
 
e809d4e
 
 
 
 
471e971
 
e809d4e
 
 
 
 
 
 
 
 
1757eeb
 
e809d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471e971
 
1757eeb
471e971
1757eeb
471e971
 
 
 
e809d4e
 
1757eeb
 
 
e809d4e
 
 
471e971
 
 
 
 
 
e809d4e
471e971
 
1e447a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import gradio as gr
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
import torch
import torchvision.transforms as T
from PIL import Image
import logging

logging.basicConfig(level=logging.INFO)
from torchvision.transforms.functional import InterpolationMode
import os
from huggingface_hub import login
hf_token = os.environ.get('hf_token', None)

# Define the path to your model
path = "h2oai/h2o-mississippi-2b"

# image preprocesing
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images, target_aspect_ratio

def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    new_target_ratios = []
    if prior_aspect_ratio is not None:
        for i in target_ratios:
            if prior_aspect_ratio[0]%i[0] != 0 and prior_aspect_ratio[1]%i[1] != 0:
                new_target_ratios.append(i)
            else:
                continue

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images
def load_image1(image_file, input_size=448, min_num=1, max_num=12):
    if isinstance(image_file, str):
        image = Image.open(image_file).convert('RGB')
    else:
        image = image_file
    transform = build_transform(input_size=input_size)
    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values, target_aspect_ratio

def load_image2(image_file, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
    
    if isinstance(image_file, str):
        image = Image.open(image_file).convert('RGB')
    else:
        image = image_file
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def load_image_msac(file_name):
    pixel_values, target_aspect_ratio = load_image1(file_name, min_num=1, max_num=6)
    pixel_values = pixel_values.to(torch.bfloat16).cuda()
    pixel_values2 = load_image2(file_name, min_num=3, max_num=6, target_aspect_ratio=target_aspect_ratio)
    pixel_values2 = pixel_values2.to(torch.bfloat16).cuda()
    pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0)
    return pixel_values
# Load the model and tokenizer
model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    use_auth_token=hf_token
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(
    path, 
    trust_remote_code=True, 
    use_fast=False,
    use_auth_token=hf_token
)
tokenizer.pad_token = tokenizer.unk_token
tokenizer.eos_token = "<|end|>"
model.generation_config.pad_token_id = tokenizer.pad_token_id


def inference(image, user_message, temperature, top_p, max_new_tokens, chatbot,state, image_state):
    # if image is provided, store it in image_state:
    if chatbot is None:
        chatbot = []
        
    if image is not None:
        image_state = load_image_msac(image)
    else:
        # If image_state is None, then no image has been provided yet
        if image_state is None:
            chatbot.append(("System", "Please provide an image to start the conversation."))
            return chatbot, state, image_state, ""
        
    # Initialize history (state) if it's None
    if state is None:
        state = None  # model.chat function handles None as empty history        

    # Append user message to chatbot
    chatbot.append((user_message, None))

    # Set generation config
    do_sample = (float(temperature) != 0.0)    


    generation_config = dict(
        num_beams=1,
        max_new_tokens=int(max_new_tokens),
        do_sample=do_sample,
        temperature= float(temperature),
        top_p= float(top_p),
    )

    # Call model.chat with history
    response_text, new_state = model.chat(
        tokenizer,
        image_state,
        user_message,
        generation_config=generation_config,
        history=state,
        return_history=True
    )
    
    # update the satet with new_state
    state = new_state
    # Update chatbot with the model's response
    chatbot[-1] = (user_message, response_text)    
    
    return chatbot, state, image_state, ""

def regenerate_response(chatbot, temperature, top_p, max_new_tokens, state, image_state):

    # Check if there is a previous user message
    if chatbot is None or len(chatbot) == 0:
        chatbot = []
        chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
        return chatbot, state, image_state
    
    # Check if there is a previous user message
    if state is None or image_state is None or len(state) == 0:
        chatbot.append(("System", "Nothing to regenerate. Please start a conversation first."))
        return chatbot, state, image_state
    
    # Get the last user message
    last_user_message, last_response = chatbot[-1]
    
    state = state[:-1]  # Remove last assistant's response from history
   
    if len(state) == 0:
        state = None
    # Set generation config
    do_sample = (float(temperature) != 0.0)    

    generation_config = dict(
        num_beams=1,
        max_new_tokens=int(max_new_tokens),
        do_sample=do_sample,
        temperature= float(temperature),
        top_p= float(top_p),
    )
    # Regenerate the response
    response_text, new_state = model.chat(
        tokenizer,
        image_state,
        last_user_message,
        generation_config=generation_config,
        history=state,  # Exclude last assistant's response
        return_history=True
    )
    
    # Update the state with new_state
    state = new_state
    
    # Update chatbot with the regenerated response
    chatbot.append((last_user_message, response_text))     
       
    return chatbot, state, image_state


def clear_all():
    return [], None, None, None  # Clear chatbot, state, image_state, image_input


# Build the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# **H2O-Mississippi**")
    
    state= gr.State()
    image_state = gr.State()
    

    with gr.Row():
        # First column with image input
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="Upload an Image")
     
        # Second column with chatbot and user input
        with gr.Column(scale=2):    
            chatbot = gr.Chatbot(label="Conversation")
            user_input = gr.Textbox(label="What is your question", placeholder="Type your message here")

        
    with gr.Accordion('Parameters', open=False):
        with gr.Row():
            temperature_input = gr.Slider(
                minimum=0.0, 
                maximum=1.0, 
                step=0.1, 
                value=0.0, 
                interactive=True,
                label="Temperature")
            top_p_input = gr.Slider(
                minimum=0.0, 
                maximum=1.0, 
                step=0.1, 
                value=0.9,
                interactive=True, 
                label="Top P")
            max_new_tokens_input = gr.Slider(
                minimum=0, 
                maximum=4096, 
                step=64, 
                value=1024, 
                interactive=True,
                label="Max New Tokens (default: 1024)"
            )
    with gr.Row():
        submit_button = gr.Button("Submit")
        regenerate_button = gr.Button("Regenerate")
        clear_button = gr.Button("Clear")
        

    # When the submit button is clicked, call the inference function
    submit_button.click(
        fn=inference, 
        inputs=[image_input, user_input, temperature_input, top_p_input, max_new_tokens_input, chatbot, state, image_state], 
        outputs=[chatbot, state, image_state, user_input]
    )
    # When the regenerate button is clicked, re-run the last inference
    regenerate_button.click(
        fn=regenerate_response,
        inputs=[chatbot, temperature_input, top_p_input,max_new_tokens_input, state, image_state],
        outputs=[chatbot, state, image_state]
    )


    clear_button.click(
        fn=clear_all, 
        inputs=None, 
        outputs=[chatbot, state, image_state, image_input]
    )

demo.launch()