Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
import logging | |
logging.basicConfig(level=logging.INFO) | |
from torchvision.transforms.functional import InterpolationMode | |
import os | |
from huggingface_hub import login | |
hf_token = os.environ.get('hf_token', None) | |
# # Define the path to your model | |
# path = "h2oai/h2ovl-mississippi-2b" | |
# Define the models and their paths | |
model_paths = { | |
"H2OVL-Mississippi-2B":"h2oai/h2ovl-mississippi-2b-prerel", | |
"H2OVL-Mississippi-0.8B":"h2oai/h2ovl-mississippi-800m-prerel", | |
# Add more models as needed | |
} | |
def load_model_and_set_image_function(model_name): | |
# Get the model path from the model_paths dictionary | |
model_path = model_paths[model_name] | |
# Load the model | |
model = AutoModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_auth_token=hf_token | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, | |
trust_remote_code=True, | |
use_fast=False, | |
use_auth_token=hf_token | |
) | |
return model, tokenizer | |
def inference(image, | |
user_message, | |
temperature, | |
top_p, | |
max_new_tokens, | |
tile_num, | |
chatbot,state, | |
image_state, | |
model_state, | |
tokenizer_state): | |
# Check if model_state is None | |
if model_state is None or tokenizer_state is None: | |
chatbot.append(("System", "Please select a model to start the conversation.")) | |
return chatbot, state, image_state, "" | |
model = model_state | |
tokenizer = tokenizer_state | |
# if image is provided, store it in image_state: | |
if chatbot is None: | |
chatbot = [] | |
if image is not None: | |
image_state = image | |
else: | |
# If image_state is None, then no image has been provided yet | |
if image_state is None: | |
chatbot.append(("System", "Please provide an image to start the conversation.")) | |
return chatbot, state, image_state, "" | |
# Initialize history (state) if it's None | |
if state is None: | |
state = None # model.chat function handles None as empty history | |
# Append user message to chatbot | |
chatbot.append((user_message, None)) | |
# Set generation config | |
do_sample = (float(temperature) != 0.0) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=do_sample, | |
temperature= float(temperature), | |
top_p= float(top_p), | |
) | |
# Call model.chat with history | |
response_text, new_state = model.chat( | |
tokenizer, | |
image_state, | |
user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, | |
return_history=True | |
) | |
# update the satet with new_state | |
state = new_state | |
# Update chatbot with the model's response | |
chatbot[-1] = (user_message, response_text) | |
return chatbot, state, image_state, "" | |
def regenerate_response(chatbot, | |
temperature, | |
top_p, | |
max_new_tokens, | |
tile_num, | |
state, | |
image_state, | |
model_state, | |
tokenizer_state): | |
# Check if model_state is None | |
if model_state is None or tokenizer_state is None: | |
chatbot.append(("System", "Please select a model to start the conversation.")) | |
return chatbot, state, image_state | |
model = model_state | |
tokenizer = tokenizer_state | |
# Check if there is a previous user message | |
if chatbot is None or len(chatbot) == 0: | |
chatbot = [] | |
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first.")) | |
return chatbot, state, image_state | |
# Check if there is a previous user message | |
if state is None or image_state is None or len(state) == 0: | |
chatbot.append(("System", "Nothing to regenerate. Please start a conversation first.")) | |
return chatbot, state, image_state | |
# Get the last user message | |
last_user_message, last_response = chatbot[-1] | |
state = state[:-1] # Remove last assistant's response from history | |
if len(state) == 0: | |
state = None | |
# Set generation config | |
do_sample = (float(temperature) != 0.0) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=do_sample, | |
temperature= float(temperature), | |
top_p= float(top_p), | |
) | |
# Regenerate the response | |
response_text, new_state = model.chat( | |
tokenizer, | |
image_state, | |
last_user_message, | |
max_tiles = int(tile_num), | |
generation_config=generation_config, | |
history=state, # Exclude last assistant's response | |
return_history=True | |
) | |
# Update the state with new_state | |
state = new_state | |
# Update chatbot with the regenerated response | |
chatbot.append((last_user_message, response_text)) | |
return chatbot, state, image_state | |
def clear_all(): | |
return [], None, None, None # Clear chatbot, state, image_state, image_input | |
# Build the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# **H2OVL-Mississippi**") | |
state= gr.State() | |
image_state = gr.State() | |
model_state = gr.State() | |
tokenizer_state = gr.State() | |
image_load_function_state = gr.State() | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
choices=list(model_paths.keys()), | |
label="Select Model" | |
) | |
# When the model selection changes, load the new model | |
model_dropdown.change( | |
fn=load_model_and_set_image_function, | |
inputs=[model_dropdown], | |
outputs=[model_state, tokenizer_state] | |
) | |
with gr.Row(equal_height=True): | |
# First column with image input | |
with gr.Column(scale=1): | |
image_input = gr.Image(type="filepath", label="Upload an Image") | |
# Second column with chatbot and user input | |
with gr.Column(scale=2): | |
chatbot = gr.Chatbot(label="Conversation") | |
user_input = gr.Textbox(label="What is your question", placeholder="Type your message here") | |
with gr.Accordion('Parameters', open=False): | |
with gr.Row(): | |
temperature_input = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.2, | |
interactive=True, | |
label="Temperature") | |
top_p_input = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=0.9, | |
interactive=True, | |
label="Top P") | |
max_new_tokens_input = gr.Slider( | |
minimum=0, | |
maximum=4096, | |
step=64, | |
value=1024, | |
interactive=True, | |
label="Max New Tokens (default: 1024)") | |
tile_num = gr.Slider( | |
minimum=2, | |
maximum=12, | |
step=1, | |
value=6, | |
interactive=True, | |
label="Tile Number (default: 6)" | |
) | |
with gr.Row(): | |
submit_button = gr.Button("Submit") | |
regenerate_button = gr.Button("Regenerate") | |
clear_button = gr.Button("Clear") | |
# When the submit button is clicked, call the inference function | |
submit_button.click( | |
fn=inference, | |
inputs=[ | |
image_input, | |
user_input, | |
temperature_input, | |
top_p_input, | |
max_new_tokens_input, | |
tile_num, | |
chatbot, | |
state, | |
image_state, | |
model_state, | |
tokenizer_state | |
], | |
outputs=[chatbot, state, image_state, user_input] | |
) | |
# When the regenerate button is clicked, re-run the last inference | |
regenerate_button.click( | |
fn=regenerate_response, | |
inputs=[ | |
chatbot, | |
temperature_input, | |
top_p_input, | |
max_new_tokens_input, | |
tile_num, | |
state, | |
image_state, | |
model_state, | |
tokenizer_state, | |
], | |
outputs=[chatbot, state, image_state] | |
) | |
clear_button.click( | |
fn=clear_all, | |
inputs=None, | |
outputs=[chatbot, state, image_state, image_input] | |
) | |
gr.Examples( | |
examples=[ | |
["assets/driver_license.png", "Extract the text from the image and fill the following json {'license_number':'',\n'full_name':'',\n'date_of_birth':'',\n'address':'',\n'issue_date':'',\n'expiration_date':'',\n}"], | |
["assets/receipt.jpg", "Read the text on the image"], | |
["assets/invoice.png", "Please extract the following fields, and return the result in JSON format: supplier_name, supplier_address, customer_name, customer_address, invoice_number, invoice_total_amount, invoice_tax_amount"], | |
["assets/CBA-1H23-Results-Presentation_wheel.png", "What is the efficiency of H2O.AI in document processing?"], | |
], | |
inputs = [image_input, user_input], | |
label = "examples", | |
) | |
demo.launch() | |