File size: 3,154 Bytes
47488ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
schema: '2.0'
stages:
  data_ingestion:
    cmd: python src/kidney_classification/pipeline/stage_01_data_ingestion.py
    deps:
    - path: config/config.yaml
      hash: md5
      md5: 23d61aa500e4da63569da56d61ddb49e
      size: 568
    - path: src/kidney_classification/pipeline/stage_01_data_ingestion.py
      hash: md5
      md5: 0496157b33ff2c7182935a33c605f461
      size: 955
    outs:
    - path: artifacts/data_ingestion/CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone
      hash: md5
      md5: 47292b3e13804acbce0f2b4ce55edc57.dir
      size: 887719156
      nfiles: 5511
  prepare_base_model:
    cmd: python src/kidney_classification/pipeline/stage_02_prepare_base_model.py
    deps:
    - path: config/config.yaml
      hash: md5
      md5: 23d61aa500e4da63569da56d61ddb49e
      size: 568
    - path: src/kidney_classification/pipeline/stage_02_prepare_base_model.py
      hash: md5
      md5: 27f16408dee8b42a215b576052e54bb2
      size: 950
    params:
      params.yaml:
        CLASSES: 4
        IMAGE_SIZE:
        - 150
        - 150
        - 3
        INCLUDE_TOP: false
        WEIGHTS: imagenet
    outs:
    - path: artifacts/prepare_base_model
      hash: md5
      md5: 2721c46e50849883acd55e5d4e3dcefb.dir
      size: 60010269
      nfiles: 1
  training:
    cmd: python src/kidney_classification/pipeline/stage_03_model_training.py
    deps:
    - path: artifacts/data_ingestion/CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone
      hash: md5
      md5: ec42dfce2ae993cf49f6d499a389c93e.dir
      size: 1661580918
      nfiles: 12446
    - path: artifacts/prepare_base_model
      hash: md5
      md5: a4f718a24c253b4e539f7ba2dc9d3442.dir
      size: 59997688
      nfiles: 1
    - path: config/config.yaml
      hash: md5
      md5: bc47b5f88a0220822ff7921144b69204
      size: 565
    - path: src/kidney_classification/pipeline/stage_03_model_training.py
      hash: md5
      md5: cb8342c5c2f23c4d395f299924161231
      size: 941
    params:
      params.yaml:
        BATCH_SIZE: 32
        EPOCHS: 15
        IMAGE_SIZE:
        - 150
        - 150
        - 3
    outs:
    - path: artifacts/training/model.h5
      hash: md5
      md5: 17969099556c165c584938f53a3fc085
      size: 62136448
  evaluation:
    cmd: python src/kidney_classification/pipeline/stage_04_model_evaluation_with_mlflow.py
    deps:
    - path: artifacts/data_ingestion/CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone
      hash: md5
      md5: ec42dfce2ae993cf49f6d499a389c93e.dir
      size: 1661580918
      nfiles: 12446
    - path: artifacts/training/model.h5
      hash: md5
      md5: 17969099556c165c584938f53a3fc085
      size: 62136448
    - path: config/config.yaml
      hash: md5
      md5: bc47b5f88a0220822ff7921144b69204
      size: 565
    - path: src/kidney_classification/pipeline/stage_04_model_evaluation_with_mlflow.py
      hash: md5
      md5: 7c91c2fdf529e4dcf7dec2684eb3d212
      size: 892
    params:
      params.yaml:
        BATCH_SIZE: 32
        EPOCHS: 15
        IMAGE_SIZE:
        - 150
        - 150
        - 3
    outs:
    - path: scores.json
      hash: md5
      md5: e80b69c44a4cf771b208a549d9e5ae30
      size: 58