import os from kidney_classification.constants import * from kidney_classification.utils.common import read_yaml, create_directories, save_json from kidney_classification.entity.config_entity import ( DataIngestionConfig, PrepareBaseModelConfig, TrainingConfig, EvaluationConfig, ) class ConfigurationManager: def __init__( self, config_filepath=CONFIG_FILE_PATH, params_filepath=PARAMS_FILE_PATH ): self.config = read_yaml(config_filepath) self.params = read_yaml(params_filepath) create_directories([self.config.artifacts_root]) def get_data_ingestion_config(self) -> DataIngestionConfig: config = self.config.data_ingestion create_directories([config.root_dir]) data_ingestion_config = DataIngestionConfig( root_dir=config.root_dir, source_URL=config.source_URL, local_data_file=config.local_data_file, unzip_dir=config.unzip_dir, ) return data_ingestion_config def get_prepare_base_model_config(self) -> PrepareBaseModelConfig: config = self.config.prepare_base_model create_directories([config.root_dir]) prepare_base_model_config = PrepareBaseModelConfig( root_dir=Path(config.root_dir), base_model_path=Path(config.base_model_path), updated_base_model_path=Path(config.updated_base_model_path), params_image_size=self.params.IMAGE_SIZE, params_include_top=self.params.INCLUDE_TOP, params_weights=self.params.WEIGHTS, params_classes=self.params.CLASSES, ) return prepare_base_model_config def get_training_config(self) -> TrainingConfig: training = self.config.training prepare_base_model = self.config.prepare_base_model params = self.params training_data = os.path.join( self.config.data_ingestion.unzip_dir, "CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone", ) create_directories([Path(training.root_dir)]) training_config = TrainingConfig( root_dir=Path(training.root_dir), trained_model_path=Path(training.trained_model_path), updated_base_model_path=Path(prepare_base_model.updated_base_model_path), training_data=Path(training_data), params_epochs=params.EPOCHS, params_batch_size=params.BATCH_SIZE, params_image_size=params.IMAGE_SIZE, ) return training_config def get_evaluation_config(self) -> EvaluationConfig: eval_config = EvaluationConfig( path_of_model="artifacts/training/model.h5", training_data="artifacts/data_ingestion/CT-KIDNEY-DATASET-Normal-Cyst-Tumor-Stone", mlflow_uri="https://dagshub.com/Shrey-patel-07/Kidney-Disease-Classifcation.mlflow", all_params=self.params, params_image_size=self.params.IMAGE_SIZE, params_batch_size=self.params.BATCH_SIZE, ) return eval_config