File size: 10,767 Bytes
0edd51d
 
 
 
 
 
 
 
 
8a50ffc
4c85b9a
793156d
1b4965b
4c85b9a
 
d2e502d
07c0e5d
0edd51d
8a50ffc
0edd51d
89539f7
0edd51d
 
89539f7
41548b6
89539f7
 
 
b6711e8
0382e35
0edd51d
89539f7
0edd51d
 
 
 
 
 
 
8a50ffc
89539f7
 
 
 
 
 
 
 
 
 
 
 
 
d8fa9a9
 
0382e35
b6711e8
89539f7
10a0a96
 
034a9f5
74d5767
52ca30c
deaadab
41548b6
0382e35
07c0e5d
 
 
5adb8cc
0382e35
 
 
5adb8cc
b6711e8
 
a2b9bf8
8ac809c
1b4965b
 
 
4c85b9a
41548b6
 
034a9f5
41548b6
 
 
 
 
034a9f5
0edd51d
 
 
 
 
 
 
 
 
 
89539f7
 
 
 
 
 
 
 
 
 
d15efa4
89539f7
 
1e95d75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0edd51d
 
 
89539f7
 
0edd51d
 
89539f7
0edd51d
89539f7
 
 
 
 
f864b44
41548b6
 
 
cbcf8c0
52ca30c
 
 
 
 
 
0edd51d
 
89539f7
0edd51d
 
89539f7
0edd51d
 
89539f7
 
 
f864b44
89539f7
 
 
f864b44
89539f7
f864b44
89539f7
f864b44
 
 
89539f7
f864b44
89539f7
f864b44
 
 
89539f7
f864b44
89539f7
f864b44
 
 
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
 
 
0edd51d
0382e35
b6711e8
89539f7
f864b44
89539f7
 
 
 
 
 
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
f864b44
 
89539f7
f864b44
 
 
89539f7
 
f864b44
89539f7
f864b44
 
 
d8fa9a9
89539f7
0edd51d
89539f7
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0382e35
 
 
 
 
 
 
b6711e8
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0382e35
b6711e8
59bd43d
41548b6
 
 
52ca30c
59bd43d
0edd51d
89539f7
0edd51d
89539f7
 
41548b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#!/usr/bin/env python

from __future__ import annotations

import os
import random

import gradio as gr
import numpy as np
import spaces
import requests
import torch
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline
from diffusers.utils import load_image
from safety_checker import StableDiffusionSafetyChecker

DESCRIPTION = "# SDXL"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    prompt_2: str = "",
    negative_prompt_2: str = "",
    use_negative_prompt: bool = False,
    use_prompt_2: bool = False,
    use_negative_prompt_2: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    guidance_scale_refiner: float = 5.0,
    num_inference_steps_base: int = 25,
    num_inference_steps_refiner: int = 25,
    use_vae: bool = False,
    use_lora: bool = False,
    apply_refiner: bool = False,
    model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE',
    vaecall = 'stabilityai/sd-vae-ft-mse',
    lora = 'amazonaws-la/juliette',
    url = "https://m.media-amazon.com/images/I/81zPcrN6m+L.jpg",
    lora_scale: float = 0.7,
):
    if torch.cuda.is_available():

        if not use_vae:
            safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
            pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model, torch_dtype=torch.float16)
            
        if use_vae:
            vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
            pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
            
        if use_lora:
            pipe.load_lora_weights(lora)
            pipe.fuse_lora(lora_scale=0.7)
            
        response = requests.get(url)
        init_image = Image.open(BytesIO(response.content)).convert("RGB")
        init_image = init_image.resize((1024, 1024))

        if ENABLE_CPU_OFFLOAD:
            pipe.enable_model_cpu_offload()
            
        else:
            pipe.to(device)

        if USE_TORCH_COMPILE:
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    if not use_prompt_2:
        prompt_2 = None  # type: ignore
    if not use_negative_prompt_2:
        negative_prompt_2 = None  # type: ignore

    if not apply_refiner:
        return pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
            image=init_image,
            output_type="pil",
        ).images[0]
    else:
        latents = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            width=width,
            height=height,
            guidance_scale=guidance_scale_base,
            num_inference_steps=num_inference_steps_base,
            generator=generator,
            output_type="latent",
        ).images
        image = refiner(
            prompt=prompt,
            negative_prompt=negative_prompt,
            prompt_2=prompt_2,
            negative_prompt_2=negative_prompt_2,
            guidance_scale=guidance_scale_refiner,
            num_inference_steps=num_inference_steps_refiner,
            image=latents,
            generator=generator,
        ).images[0]
        return image


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        model = gr.Text(label='Modelo')
        vaecall = gr.Text(label='VAE')
        lora = gr.Text(label='LoRA')
        lora_scale = gr.Slider(
                label="Lora Scale",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
            use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
            use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
        negative_prompt = gr.Text(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )
        prompt_2 = gr.Text(
            label="Prompt 2",
            max_lines=1,
            placeholder="Enter your prompt",
            visible=False,
        )
        negative_prompt_2 = gr.Text(
            label="Negative prompt 2",
            max_lines=1,
            placeholder="Enter a negative prompt",
            visible=False,
        )

        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
        use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
        use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
        apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
        with gr.Row():
            guidance_scale_base = gr.Slider(
                label="Guidance scale for base",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_base = gr.Slider(
                label="Number of inference steps for base",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row(visible=False) as refiner_params:
            guidance_scale_refiner = gr.Slider(
                label="Guidance scale for refiner",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
            num_inference_steps_refiner = gr.Slider(
                label="Number of inference steps for refiner",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_prompt_2,
        outputs=prompt_2,
        queue=False,
        api_name=False,
    )
    use_negative_prompt_2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt_2,
        outputs=negative_prompt_2,
        queue=False,
        api_name=False,
    )
    use_vae.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_vae,
        outputs=vaecall,
        queue=False,
        api_name=False,
    )
    use_lora.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora,
        outputs=lora,
        queue=False,
        api_name=False,
    )
    apply_refiner.change(
        fn=lambda x: gr.update(visible=x),
        inputs=apply_refiner,
        outputs=refiner_params,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            prompt_2.submit,
            negative_prompt_2.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            prompt_2,
            negative_prompt_2,
            use_negative_prompt,
            use_prompt_2,
            use_negative_prompt_2,
            seed,
            width,
            height,
            guidance_scale_base,
            guidance_scale_refiner,
            num_inference_steps_base,
            num_inference_steps_refiner,
            use_vae,
            use_lora,
            apply_refiner,
            model,
            vaecall,
            lora,
            lora_scale,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()