Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import requests | |
import torch | |
from io import BytesIO | |
from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline | |
DESCRIPTION = "# SDXL" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" | |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" | |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1" | |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 25, | |
num_inference_steps_refiner: int = 25, | |
use_vae: bool = False, | |
use_lora: bool = False, | |
apply_refiner: bool = False, | |
model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE', | |
vaecall = 'stabilityai/sd-vae-ft-mse', | |
lora = 'amazonaws-la/juliette', | |
lora_scale: float = 0.7, | |
url = 'https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg', | |
) -> PIL.Image.Image: | |
if torch.cuda.is_available(): | |
if not use_vae: | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model, torch_dtype=torch.float16) | |
if use_vae: | |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16) | |
if use_lora: | |
pipe.load_lora_weights(lora) | |
pipe.fuse_lora(lora_scale=0.7) | |
response = requests.get(url) | |
init_image = Image.open(BytesIO(response.content)).convert("RGB") | |
init_image = init_image.resize((1024, 1024)) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
if USE_TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
if not apply_refiner: | |
return pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
image=init_image, | |
output_type="pil", | |
).images[0] | |
else: | |
latents = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="latent", | |
).images | |
image = refiner( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator, | |
).images[0] | |
return image | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
model = gr.Text(label='Modelo') | |
vaecall = gr.Text(label='VAE') | |
lora = gr.Text(label='LoRA') | |
lora_scale = gr.Slider( | |
label="Lora Scale", | |
minimum=0.01, | |
maximum=1, | |
step=0.01, | |
value=0.7, | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
prompt_2 = gr.Text( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
) | |
negative_prompt_2 = gr.Text( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE) | |
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA) | |
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="Guidance scale for base", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="Number of inference steps for base", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row(visible=False) as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="Guidance scale for refiner", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="Number of inference steps for refiner", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_vae.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_vae, | |
outputs=vaecall, | |
queue=False, | |
api_name=False, | |
) | |
use_lora.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_lora, | |
outputs=lora, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
run_button.click, | |
], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
use_vae, | |
use_lora, | |
apply_refiner, | |
model, | |
vaecall, | |
lora, | |
lora_scale, | |
], | |
outputs=result, | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |