#!/usr/bin/env python from __future__ import annotations import os import random import gradio as gr import numpy as np import spaces import requests import torch from PIL import Image from io import BytesIO from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline from diffusers.utils import load_image from safety_checker import StableDiffusionSafetyChecker DESCRIPTION = "# SDXL" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1" ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1" ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU def generate( prompt: str, negative_prompt: str = "", prompt_2: str = "", negative_prompt_2: str = "", use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 25, num_inference_steps_refiner: int = 25, use_vae: bool = False, use_lora: bool = False, apply_refiner: bool = False, model = 'SG161222/Realistic_Vision_V6.0_B1_noVAE', vaecall = 'stabilityai/sd-vae-ft-mse', lora = 'amazonaws-la/juliette', url = "https://m.media-amazon.com/images/I/81zPcrN6m+L.jpg", lora_scale: float = 0.7, ): if torch.cuda.is_available(): if not use_vae: safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model, torch_dtype=torch.float16) if use_vae: vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16) if use_lora: pipe.load_lora_weights(lora) pipe.fuse_lora(lora_scale=0.7) response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((1024, 1024)) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = None # type: ignore if not use_prompt_2: prompt_2 = None # type: ignore if not use_negative_prompt_2: negative_prompt_2 = None # type: ignore if not apply_refiner: return pipe( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, image=init_image, output_type="pil", ).images[0] else: latents = pipe( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="latent", ).images image = refiner( prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_refiner, num_inference_steps=num_inference_steps_refiner, image=latents, generator=generator, ).images[0] return image examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", ] with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): model = gr.Text(label='Modelo') vaecall = gr.Text(label='VAE') lora = gr.Text(label='LoRA') lora_scale = gr.Slider( label="Lora Scale", minimum=0.01, maximum=1, step=0.01, value=0.7, ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced options", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) prompt_2 = gr.Text( label="Prompt 2", max_lines=1, placeholder="Enter your prompt", visible=False, ) negative_prompt_2 = gr.Text( label="Negative prompt 2", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE) use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA) apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER) with gr.Row(): guidance_scale_base = gr.Slider( label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_base = gr.Slider( label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25, ) with gr.Row(visible=False) as refiner_params: guidance_scale_refiner = gr.Slider( label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0, ) num_inference_steps_refiner = gr.Slider( label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25, ) gr.Examples( examples=examples, inputs=prompt, outputs=result, fn=generate, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False, ) use_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False, ) use_negative_prompt_2.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False, ) use_vae.change( fn=lambda x: gr.update(visible=x), inputs=use_vae, outputs=vaecall, queue=False, api_name=False, ) use_lora.change( fn=lambda x: gr.update(visible=x), inputs=use_lora, outputs=lora, queue=False, api_name=False, ) apply_refiner.change( fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, prompt_2.submit, negative_prompt_2.submit, run_button.click, ], fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False, ).then( fn=generate, inputs=[ prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, use_vae, use_lora, apply_refiner, model, vaecall, lora, lora_scale, ], outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()