Jofthomas HF staff commited on
Commit
b799309
β€’
1 Parent(s): d5bb0b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -59
app.py CHANGED
@@ -7,8 +7,42 @@ import plotly.graph_objs as go
7
  from huggingface_hub import HfApi
8
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
9
 
10
- from yall import create_yall
11
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
 
14
  def convert_markdown_table_to_dataframe(md_content):
@@ -89,61 +123,34 @@ def create_bar_chart(df, category):
89
 
90
 
91
  def main():
92
- st.set_page_config(page_title="YALL - Yet Another LLM Leaderboard", layout="wide")
93
 
94
- st.title("πŸ† YALL - Yet Another LLM Leaderboard")
95
- st.markdown("Leaderboard made with 🧐 [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite.")
96
- content = create_yall()
97
- tab1, tab2 = st.tabs(["πŸ† Leaderboard", "πŸ“ About"])
98
 
99
- # Leaderboard tab
100
  with tab1:
101
- if content:
102
  try:
103
- score_columns = ['Elo']
104
-
105
- # Display dataframe
106
- full_df = convert_markdown_table_to_dataframe(content)
107
- for col in score_columns:
108
- # Corrected use of pd.to_numeric
109
- full_df[col] = pd.to_numeric(full_df[col].str.strip(), errors='coerce')
110
- full_df = get_model_info(full_df)
111
- full_df['Tags'] = full_df['Tags'].fillna('')
112
- df = pd.DataFrame(columns=full_df.columns)
113
-
114
- # Create a DataFrame based on selected filters
115
- dfs_to_concat = []
116
-
117
- # Concatenate the DataFrames
118
- if dfs_to_concat:
119
- df = pd.concat(dfs_to_concat, ignore_index=True)
120
-
121
- # Sort values
122
  df = df.sort_values(by='Elo', ascending=False)
123
-
124
  # Add a search bar
125
  search_query = st.text_input("Search models", "")
126
-
127
- # Filter the DataFrame based on the search query
128
- if search_query:
129
- df = df[df['Model'].str.contains(search_query, case=False)]
130
-
131
  # Display the filtered DataFrame or the entire leaderboard
132
  st.dataframe(
133
- df[['Model'] + score_columns + ['Likes', 'URL']],
134
  use_container_width=True,
135
  column_config={
136
- "Likes": st.column_config.NumberColumn(
137
- "Likes",
138
- help="Number of likes on Hugging Face",
139
- format="%d ❀️",
140
- ),
141
- "URL": st.column_config.LinkColumn("URL"),
142
  },
143
  hide_index=True,
144
- height=int(len(df) * 36.2),
145
  )
146
 
 
 
 
 
147
  # Comparison between models
148
  selected_models = st.multiselect('Select models to compare', df['Model'].unique())
149
  comparison_df = df[df['Model'].isin(selected_models)]
@@ -151,12 +158,7 @@ def main():
151
  comparison_df,
152
  use_container_width=True,
153
  column_config={
154
- "Likes": st.column_config.NumberColumn(
155
- "Likes",
156
- help="Number of likes on Hugging Face",
157
- format="%d ❀️",
158
- ),
159
- "URL": st.column_config.LinkColumn("URL"),
160
  },
161
  hide_index=True,
162
  )
@@ -176,21 +178,12 @@ def main():
176
  )
177
 
178
  # Full-width plot for the first category
179
- create_bar_chart(df, score_columns[0])
180
 
181
  # Next two plots in two columns
182
  col1, col2 = st.columns(2)
183
  with col1:
184
- create_bar_chart(df, score_columns[1])
185
- with col2:
186
- create_bar_chart(df, score_columns[2])
187
-
188
- # Last two plots in two columns
189
- col3, col4 = st.columns(2)
190
- with col3:
191
- create_bar_chart(df, score_columns[3])
192
- with col4:
193
- create_bar_chart(df, score_columns[4])
194
 
195
 
196
  except Exception as e:
 
7
  from huggingface_hub import HfApi
8
  from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
9
 
10
+ #from yall import create_yall
11
+
12
+ def place_holder_dataframe():
13
+ list_dict = [
14
+ {"gist_id":"mistralai/Mistral-7B-Instruct-v0.3",
15
+ "filename":"https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/README.md",
16
+ "url":"https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3",
17
+ "model_name":"Mistral-7B-Instruct-v0.3",
18
+ "model_id":"mistralai/Mistral-7B-Instruct-v0.3",
19
+ "Model":"Mistral-7B-Instruct-v0.3",
20
+ "Elo":1200,
21
+ "Undetected rate":0.27
22
+ },
23
+ {
24
+ "gist_id":"mistralai/Mixtral-8x22B-Instruct-v0.1",
25
+ "filename":"https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1/blob/main/README.md",
26
+ "url":"https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
27
+ "model_name":"Mixtral-8x22B-Instruct-v0.1",
28
+ "model_id":"mistralai/Mixtral-8x22B-Instruct-v0.1",
29
+ "Model":"Mixtral-8x22B-Instruct-v0.1",
30
+ "Elo":1950,
31
+ "Undetected rate":0.63
32
+ },
33
+ {
34
+ "gist_id":"mistralai/Mixtral-8x7B-Instruct-v0.1",
35
+ "filename":"https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/blob/main/README.md",
36
+ "url":"https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1",
37
+ "model_name":"Mixtral-8x7B-Instruct-v0.1",
38
+ "model_id":"mistralai/Mixtral-8x7B-Instruct-v0.1",
39
+ "Model":"Mixtral-8x7B-Instruct-v0.1",
40
+ "Elo":1467,
41
+ "Undetected rate":0.41
42
+ }
43
+ ]
44
+ df = pd.DataFrame(list_dict)
45
+ return df
46
 
47
 
48
  def convert_markdown_table_to_dataframe(md_content):
 
123
 
124
 
125
  def main():
126
+ st.set_page_config(page_title="LLM Roleplay Leaderboard", layout="wide")
127
 
128
+ st.title("πŸ†πŸŽ­ LLM Roleplay Leaderboard")
129
+ st.markdown("LLM Roleplay Leaderboard that uses scores from the matou garou roleplay game πŸ πŸˆβ€.")
130
+ #content = create_yall()
131
+ tab1, tab2 = st.tabs(["πŸ†πŸŽ­ Leaderboard", "πŸ“ About"])
132
 
133
+ df = place_holder_dataframe()
134
  with tab1:
135
+ if len(df)>0:
136
  try:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  df = df.sort_values(by='Elo', ascending=False)
 
138
  # Add a search bar
139
  search_query = st.text_input("Search models", "")
 
 
 
 
 
140
  # Display the filtered DataFrame or the entire leaderboard
141
  st.dataframe(
142
+ df[['Model', 'Elo', 'url', 'Undetected rate']],
143
  use_container_width=True,
144
  column_config={
145
+ "url": st.column_config.LinkColumn("url"),
 
 
 
 
 
146
  },
147
  hide_index=True,
 
148
  )
149
 
150
+ # Filter the DataFrame based on the search query
151
+ if search_query:
152
+ df = df[df['Model'].str.contains(search_query, case=False)]
153
+
154
  # Comparison between models
155
  selected_models = st.multiselect('Select models to compare', df['Model'].unique())
156
  comparison_df = df[df['Model'].isin(selected_models)]
 
158
  comparison_df,
159
  use_container_width=True,
160
  column_config={
161
+ "url": st.column_config.LinkColumn("url"),
 
 
 
 
 
162
  },
163
  hide_index=True,
164
  )
 
178
  )
179
 
180
  # Full-width plot for the first category
181
+ create_bar_chart(df, "Elo")
182
 
183
  # Next two plots in two columns
184
  col1, col2 = st.columns(2)
185
  with col1:
186
+ create_bar_chart(df, "Undetected rate")
 
 
 
 
 
 
 
 
 
187
 
188
 
189
  except Exception as e: