Spaces:
Runtime error
Runtime error
File size: 9,004 Bytes
50b15cd b04b973 50b15cd 433d7c5 50b15cd d2c10a6 b04b973 50b15cd adc362f 50b15cd d2c10a6 50b15cd 64c14eb 50b15cd 3369739 d2c10a6 b8d132b d2c10a6 57db3d5 d2c10a6 1949c59 d2c10a6 569d21a d2c10a6 744a885 d2c10a6 744a885 d2c10a6 569d21a cad2878 569d21a d2c10a6 1949c59 a03c662 d2c10a6 cad2878 a03c662 cad2878 a03c662 cad2878 d2c10a6 cad2878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from io import BytesIO
import requests
import gradio as gr
import requests
import torch
from tqdm import tqdm
from PIL import Image, ImageOps
from diffusers import StableDiffusionInpaintPipeline
from torchvision.transforms import ToPILImage
from utils import preprocess, prepare_mask_and_masked_image, recover_image, resize_and_crop
gr.close_all()
topil = ToPILImage()
pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
torch_dtype=torch.float16,
)
pipe_inpaint = pipe_inpaint.to("cuda")
## Good params for editing that we used all over the paper --> decent quality and speed
GUIDANCE_SCALE = 7.5
NUM_INFERENCE_STEPS = 100
DEFAULT_SEED = 1234
def pgd(X, targets, model, criterion, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
pbar = tqdm(range(iters))
for i in pbar:
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
X_adv.requires_grad_(True)
loss = (model(X_adv).latent_dist.mean - targets).norm()
pbar.set_description(f"Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
grad, = torch.autograd.grad(loss, [X_adv])
X_adv = X_adv - grad.detach().sign() * actual_step_size
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
X_adv.grad = None
if mask is not None:
X_adv.data *= mask
return X_adv
def get_target():
target_url = 'https://www.rtings.com/images/test-materials/2015/204_Gray_Uniformity.png'
response = requests.get(target_url)
target_image = Image.open(BytesIO(response.content)).convert("RGB")
target_image = target_image.resize((512, 512))
return target_image
def immunize_fn(init_image, mask_image):
with torch.autocast('cuda'):
mask, X = prepare_mask_and_masked_image(init_image, mask_image)
X = X.half().cuda()
mask = mask.half().cuda()
targets = pipe_inpaint.vae.encode(preprocess(get_target()).half().cuda()).latent_dist.mean
adv_X = pgd(X,
targets = targets,
model=pipe_inpaint.vae.encode,
criterion=torch.nn.MSELoss(),
clamp_min=-1,
clamp_max=1,
eps=0.12,
step_size=0.01,
iters=200,
mask=1-mask
)
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
adv_image = topil(adv_X[0]).convert("RGB")
adv_image = recover_image(adv_image, init_image, mask_image, background=True)
return adv_image
def run(image, prompt, seed, guidance_scale, num_inference_steps, immunize=False):
if seed == '':
seed = DEFAULT_SEED
else:
seed = int(seed)
torch.manual_seed(seed)
init_image = Image.fromarray(image['image'])
init_image = resize_and_crop(init_image, (512,512))
mask_image = ImageOps.invert(Image.fromarray(image['mask']).convert('RGB'))
mask_image = resize_and_crop(mask_image, init_image.size)
if immunize:
immunized_image = immunize_fn(init_image, mask_image)
image_edited = pipe_inpaint(prompt=prompt,
image=init_image if not immunize else immunized_image,
mask_image=mask_image,
height = init_image.size[0],
width = init_image.size[1],
eta=1,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
image_edited = recover_image(image_edited, init_image, mask_image)
if immunize:
return [(immunized_image, 'Immunized Image'), (image_edited, 'Edited After Immunization')]
else:
return [(image_edited, 'Edited Image (Without Immunization)')]
description='''<u>Demo of our paper: <br>
**Raising the Cost of Malicious AI-Powered Image Editing** <br>
*[Hadi Salman](https://twitter.com/hadisalmanX), [Alaa Khaddaj](https://twitter.com/Alaa_Khaddaj), [Guillaume Leclerc](https://twitter.com/gpoleclerc), [Andrew Ilyas](https://twitter.com/andrew_ilyas), [Aleksander Madry](https://twitter.com/aleks_madry)* <br>
MIT [Paper](https://arxiv.org/abs/2302.06588)
[Blog post](https://gradientscience.org/photoguard/)
[![](https://badgen.net/badge/icon/GitHub?icon=github&label)](https://github.com/MadryLab/photoguard)
<br />
Below you can test our (encoder attack) immunization method for making images resistant to manipulation by Stable Diffusion. This immunization process forces the model to perform unrealistic edits.
**See Section 5 in our paper for a discussion of the intended use cases for (as well as limitations of) this tool.**
<br />
'''
examples_list = [
['./images/hadi_and_trevor.jpg', 'man attending a wedding', '329357', GUIDANCE_SCALE, NUM_INFERENCE_STEPS],
['./images/trevor_2.jpg', 'two men in prison', '329357', GUIDANCE_SCALE, NUM_INFERENCE_STEPS],
['./images/elon_2.jpg', 'man in a metro station', '214213', GUIDANCE_SCALE, NUM_INFERENCE_STEPS],
]
with gr.Blocks() as demo:
gr.HTML(value="""<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Interactive Demo: Raising the Cost of Malicious AI-Powered Image Editing </h1>
""")
gr.Markdown(description)
with gr.Accordion(label='How to use (step by step):', open=False):
gr.Markdown('''
*First, let's edit your image:*
+ Upload an image (or select from the examples below)
+ Use the brush to mask the parts of the image you want to keep unedited (e.g., faces of people)
+ Add a prompt to guide the edit (see examples below)
+ Play with the seed and click submit until you get a realistic edit that you are happy with (we provided good example seeds for you below)
*Now, let's immunize your image and try again:*
+ Click on the "Immunize" button, then submit.
+ You will get an immunized version of the image (which should look essentially identical to the original one) as well as its edited version (which should now look rather unrealistic)
''')
with gr.Accordion(label='Example (video):', open=False):
gr.HTML('''
<center>
<iframe width="920" height="600" src="https://www.youtube.com/embed/aTC59Q6ZDNM">
allow="fullscreen;" frameborder="0">
</iframe>
</center>
'''
)
with gr.Row():
with gr.Column():
imgmask = gr.ImageMask(label='Drawing tool to mask regions you want to keep, e.g. faces')
prompt = gr.Textbox(label='Prompt', placeholder='A photo of a man in a wedding')
seed = gr.Textbox(label='Seed (change to get different edits)', placeholder=str(DEFAULT_SEED), visible=True)
with gr.Accordion("Advanced options (to improve quality of edits)", open=False):
scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=25.0, value=GUIDANCE_SCALE, step=0.1)
num_steps = gr.Slider(label="Number of inference steps (higher better, but slower)", minimum=10, maximum=250, value=NUM_INFERENCE_STEPS, step=5)
immunize = gr.Checkbox(label='Immunize', value=False)
b1 = gr.Button('Submit')
with gr.Column():
genimages = gr.Gallery(label="Generated images",
show_label=False,
elem_id="gallery").style(grid=[1,2], height="auto")
duplicate = gr.HTML("""
<p>For faster inference without waiting in queue, run this demo locally (instruction in our Github repo), or duplicate this space and upgrade to GPU in settings.
<br/>
<a href="https://github.com/MadryLab/photoguard">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://badgen.net/badge/icon/GitHub?icon=github&label"></a>
<a href="https://huggingface.co/spaces/hadisalman/photoguard?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
""")
b1.click(run, [imgmask, prompt, seed, scale, num_steps, immunize], [genimages])
examples = gr.Examples(examples=examples_list,inputs = [imgmask, prompt, seed, scale, num_steps, immunize], outputs=[genimages], cache_examples=False, fn=run)
demo.launch()
# demo.launch(server_name='0.0.0.0', share=False, server_port=7860, inline=False) |