parishotel / paris.py
hamza50's picture
Upload 23 files
93b46fc
raw
history blame
10.3 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Hamza Farooq
"""
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
import os
nlp = spacy.load("en_core_web_sm")
from spacy import displacy
import streamlit as st
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from matplotlib import pyplot as plt
import nltk
# import utils as utl
import time
import torch
import transformers
from transformers import BartTokenizer, BartForConditionalGeneration
from string import punctuation
# tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle as pkl
from sentence_transformers import SentenceTransformer, util
import torch
def main():
# Settings
st.set_page_config(layout="wide", page_title='Paris Hotel Finder', page_icon="🎈" )
from string import punctuation
punctuation=punctuation+ '\n'
# def bart_summarize(text, num_beams=20, length_penalty=2, max_length=2048, min_length=56, no_repeat_ngram_size=2):
#
# text = text.replace('\n','')
# text_input_ids = tr.batch_encode_plus([text], return_tensors='pt', max_length=1024)['input_ids'].to(torch_device)
# summary_ids = mdl.generate(text_input_ids, num_beams=int(num_beams), length_penalty=float(length_penalty), max_length=int(max_length), min_length=int(min_length), no_repeat_ngram_size=int(no_repeat_ngram_size))
# summary_txt = tr.decode(summary_ids.squeeze(), skip_special_tokens=True)
# return summary_txt
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle as pkl
from sentence_transformers import SentenceTransformer, util
import torch
#import os
@st.cache(allow_output_mutation=True)
def load_model():
return SentenceTransformer('all-MiniLM-L6-v2')
embedder = load_model()
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
# gc = geonamescache.GeonamesCache()
#
# # gets nested dictionary for countries
# countries = gc.get_countries()
#
# # gets nested dictionary for cities
# cities = gc.get_cities()
# def gen_dict_extract(var, key):
# if isinstance(var, dict):
# for k, v in var.items():
# if k == key:
# yield v
# if isinstance(v, (dict, list)):
# yield from gen_dict_extract(v, key)
# elif isinstance(var, list):
# for d in var:
# yield from gen_dict_extract(d, key)
#
# cities = [*gen_dict_extract(cities, 'name')]
# countries = [*gen_dict_extract(countries, 'name')]
#
# cities.append('New York')
# mask = np.array(Image.open('upvote.png'))
#original_title = '<p style="font-family:IBM Mono; color:Blue; font-size: 20px;">Original image</p>'
st.title("Parisian Hotel Finder")
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
- This app allows you to search for hotels based on what you're looking for, rather than just cities - it helps with reducing time to go through exhaustive reviews for each hotel!
- It uses an innovative semantic search approach that leverages multiple NLP embeddings and relies on [Transformers] (https://huggingface.co/transformers/) 🤗.
"""
)
punctuation=punctuation+ '\n'
#import os
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
df_all = pd.read_csv('combined_paris.csv')
df_all = df_all[['Hotel','review']]
df_all = df_all.drop_duplicates()
df_all = df_all.reset_index(drop=True)
summary_hotel = pd.read_csv('df_combined_paris.csv')
#
# df['hotel_name'].drop_duplicates()
df_combined = df_all.sort_values(['Hotel']).groupby('Hotel', sort=False).review.apply(''.join).reset_index(name='all_review')
import re
# df_combined = pd.read_csv('df_combined.csv')
df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x))
def lower_case(input_str):
input_str = input_str.lower()
return input_str
df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x))
df = df_combined
df_sentences = df_combined.set_index("all_review")
df_sentences = df_sentences["Hotel"].to_dict()
df_sentences_list = list(df_sentences.keys())
import pandas as pd
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
df_sentences_list = [str(d) for d in tqdm(df_sentences_list)]
#
corpus = df_sentences_list
# corpus_embeddings = embedder.encode(corpus,show_progress_bar=True)
corpus_embeddings = np.load('embeddings_review.npy')
corpus_embeddings_h = np.load('embeddings_h_r.npy')
#
# model = SentenceTransformer('all-MiniLM-L6-v2')
# paraphrases = util.paraphrase_mining(model, corpus)
#queries = ['Hotel close to Central Park',
# 'Hotel with breakfast'
# ]
# from transformers import AutoTokenizer, AutoModel
# import torch
# import torch.nn.functional as F
#
# #Mean Pooling - Take attention mask into account for correct averaging
# def mean_pooling(model_output, attention_mask):
# token_embeddings = model_output[0] #First element of model_output contains all token embeddings
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
#
#
# # Sentences we want sentence embeddings for
# sentences = corpus
#
# # Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
#
# # Tokenize sentences
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
#
# # Compute token embeddings
# with torch.no_grad():
# model_output = model(**encoded_input)
#
# # Perform pooling
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
#
# # Normalize embeddings
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
#
# st.text("Sentence embeddings:")
# st.text(sentence_embeddings)
#
#
#corpus_embeddings = sentence_embeddings
# Query sentences
def plot_cloud(wordcloud):
# Set figure size
st.pyplot.figure(figsize=(20, 10))
# Display image
st.pyplot(wordcloud)
# No axis details
#st.pyplot.axis("off");
sampletext = 'e.g. Hotel near Eiffel Tower with big rooms'
userinput = st.text_input('Tell us what are you looking in your hotel?','e.g. Hotel near Eiffel Tower with big rooms',autocomplete="on")
if not userinput or userinput == sampletext:
st.write("Please enter a query to get results")
else:
query = [str(userinput)]
doc = nlp(str(userinput))
# for ent in doc.ents:
# if ent.label_ == 'GPE':
# if ent.text in countries:
# st.write(f"Country : {ent.text}")
# elif ent.text in cities:
# st.write("city")
# st.write(ent.text)
# st.write(f"City : {ent.text}")
# else:
# print(f"Other GPE : {ent.text}")
# query_embeddings = embedder.encode(queries,show_progress_bar=True)
top_k = min(5, len(corpus))
query_embedding = embedder.encode(query, convert_to_tensor=True)
# We use cosine-similarity and torch.topk to find the highest 5 scores
cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k)
# st.write("\n\n======================\n\n")
# st.write("Query:", query)
# # doc = nlp(query)
sentence_spans = list(doc.sents)
ent_html = displacy.render(doc, style="ent", jupyter=False)
# Display the entity visualization in the browser:
st.markdown(ent_html, unsafe_allow_html=True)
#displacy.render(doc, jupyter = True, style="ent")
st.write("##")
st.subheader("\n\n\n\n\n\nTop 5 most relevant hotels:\n\n\n\n\n\n\n")
st.write("\n\n======================\n\n")
for score, idx in zip(top_results[0], top_results[1]):
row_dict = df.loc[df['all_review']== corpus[idx]]
st.subheader(row_dict['Hotel'].values[0])
hotel_subset = df_all.loc[df_all['Hotel']==row_dict['Hotel'].values[0]]
hotel_sub = summary_hotel.loc[summary_hotel['Hotel']==row_dict['Hotel'].values[0]]
st.caption("Review Summary:")
st.write(hotel_sub['summary'].values[0])
st.caption("Relevancy: {:.4f}".format(score))
st.caption("Relevant reviews:")
df_sentences_h = hotel_subset.set_index("review")
df_sentences_h = df_sentences_h["Hotel"].to_dict()
df_sentences_list_h = list(df_sentences_h.keys())
df_sentences_list_h = [str(d) for d in tqdm(df_sentences_list_h)]
#
corpus_h = df_sentences_list_h
# corpus_embeddings_h = embedder.encode(corpus_h,show_progress_bar=True)
sublist = [element for i, element in enumerate(corpus_embeddings_h) if i in (df_all[df_all['Hotel'] == row_dict['Hotel'].values[0]].index.values)]
cos_scores_h = util.pytorch_cos_sim(query_embedding, sublist)[0]
top_results_h = torch.topk(cos_scores_h, k=top_k)
for score, idx in zip(top_results_h[0], top_results_h[1]):
st.write(corpus_h[idx])
if __name__ == '__main__':
main()