parishotel / app.py
hamza50's picture
Update app.py
4c84f10
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Hamza Farooq
"""
import spacy
from spacy.lang.en.stop_words import STOP_WORDS
from string import punctuation
from collections import Counter
from heapq import nlargest
import os
nlp = spacy.load("en_core_web_sm")
from spacy import displacy
import streamlit as st
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from matplotlib import pyplot as plt
import nltk
nltk.download('stopwords')
import os
import streamlit as st
import time
import torch
import transformers
from transformers import BartTokenizer, BartForConditionalGeneration
tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
mdl = BartForConditionalGeneration.from_pretrained('facebook/bart-large-cnn')
torch_device = 'gpu'
def main():
# Settings
st.set_page_config(layout="wide", page_title='New York Hotels')
def bart_summarize(text, num_beams=20, length_penalty=2, max_length=2048, min_length=56, no_repeat_ngram_size=2):
text = text.replace('\n','')
text_input_ids = tr.batch_encode_plus([text], return_tensors='pt', max_length=1024)['input_ids'].to(torch_device)
summary_ids = mdl.generate(text_input_ids, num_beams=int(num_beams), length_penalty=float(length_penalty), max_length=int(max_length), min_length=int(min_length), no_repeat_ngram_size=int(no_repeat_ngram_size))
summary_txt = tr.decode(summary_ids.squeeze(), skip_special_tokens=True)
return summary_txt
# def gen_dict_extract(var, key):
# if isinstance(var, dict):
# for k, v in var.items():
# if k == key:
# yield v
# if isinstance(v, (dict, list)):
# yield from gen_dict_extract(v, key)
# elif isinstance(var, list):
# for d in var:
# yield from gen_dict_extract(d, key)
#
# cities = [*gen_dict_extract(cities, 'name')]
# countries = [*gen_dict_extract(countries, 'name')]
#
# cities.append('New York')
from nltk.corpus import stopwords
stopwords = set(stopwords.words('english'))
#mask = np.array(Image.open('upvote.png'))
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
#original_title = '<p style="font-family:IBM Mono; color:Blue; font-size: 20px;">Original image</p>'
st.title("New York Hotel Finder")
stopwords=list(STOP_WORDS)
stopwords.extend(['hotel','room','rooms'])
from string import punctuation
punctuation=punctuation+ '\n'
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle as pkl
from sentence_transformers import SentenceTransformer, util
import torch
#import os
embedder = SentenceTransformer('all-MiniLM-L6-v2')
df_all = pd.read_csv('Hotel New York Combined.csv')
df_all = df_all[['hotel_name','review_body']]
#
# df['hotel_name'].drop_duplicates()
# df_combined = df.sort_values(['hotel_name']).groupby('hotel_name', sort=False).review_body.apply(''.join).reset_index(name='all_review')
import re
df_combined = pd.read_csv('df_combined.csv')
# df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x))
#
# def lower_case(input_str):
# input_str = input_str.lower()
# return input_str
#
# df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x))
df = df_combined
df_sentences = df_combined.set_index("all_review")
df_sentences = df_sentences["hotel_name"].to_dict()
df_sentences_list = list(df_sentences.keys())
import pandas as pd
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
df_sentences_list = [str(d) for d in tqdm(df_sentences_list)]
#
corpus = df_sentences_list
corpus_embeddings = embedder.encode(corpus,show_progress_bar=True)
#
# model = SentenceTransformer('all-MiniLM-L6-v2')
# paraphrases = util.paraphrase_mining(model, corpus)
#queries = ['Hotel close to Central Park',
# 'Hotel with breakfast'
# ]
# from transformers import AutoTokenizer, AutoModel
# import torch
# import torch.nn.functional as F
#
# #Mean Pooling - Take attention mask into account for correct averaging
# def mean_pooling(model_output, attention_mask):
# token_embeddings = model_output[0] #First element of model_output contains all token embeddings
# input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
# return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
#
#
# # Sentences we want sentence embeddings for
# sentences = corpus
#
# # Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L12-v1')
#
# # Tokenize sentences
# encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
#
# # Compute token embeddings
# with torch.no_grad():
# model_output = model(**encoded_input)
#
# # Perform pooling
# sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
#
# # Normalize embeddings
# sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
#
# st.text("Sentence embeddings:")
# st.text(sentence_embeddings)
#
#
#corpus_embeddings = sentence_embeddings
# Query sentences
def plot_cloud(wordcloud):
# Set figure size
st.pyplot.figure(figsize=(40, 30))
# Display image
st.pyplot(wordcloud)
# No axis details
#st.pyplot.axis("off");
userinput = st.text_input('Tell us what are you looking in your hotel?')
if not userinput:
st.write("Please enter a query to get results")
else:
query = [str(userinput)]
doc = nlp(str(userinput))
for ent in doc.ents:
if ent.label_ == 'GPE':
if ent.text in countries:
st.write(f"Country : {ent.text}")
elif ent.text in cities:
st.write("city")
st.write(ent.text)
st.write(f"City : {ent.text}")
else:
print(f"Other GPE : {ent.text}")
# query_embeddings = embedder.encode(queries,show_progress_bar=True)
top_k = min(5, len(corpus))
query_embedding = embedder.encode(query, convert_to_tensor=True)
# We use cosine-similarity and torch.topk to find the highest 5 scores
cos_scores = util.pytorch_cos_sim(query_embedding, corpus_embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k)
# st.write("\n\n======================\n\n")
# st.write("Query:", query)
# # doc = nlp(query)
sentence_spans = list(doc.sents)
ent_html = displacy.render(doc, style="ent", jupyter=False)
# Display the entity visualization in the browser:
st.markdown(ent_html, unsafe_allow_html=True)
#displacy.render(doc, jupyter = True, style="ent")
st.write("##")
st.subheader("\n\n\n\n\n\nTop 5 most relevant hotels:\n\n\n\n\n\n\n")
st.write("\n\n======================\n\n")
for score, idx in zip(top_results[0], top_results[1]):
row_dict = df.loc[df['all_review']== corpus[idx]]
st.subheader(row_dict['hotel_name'].values[0])
hotel_subset = df_all.loc[df_all['hotel_name']==row_dict['hotel_name'].values[0]]
st.caption("Review Summary:")
st.write(row_dict['summary'].values[0])
st.caption("Relevancy: {:.4f}".format(score))
st.caption("Relevant reviews:")
df_sentences_h = hotel_subset.set_index("review_body")
df_sentences_h = df_sentences_h["hotel_name"].to_dict()
df_sentences_list_h = list(df_sentences_h.keys())
df_sentences_list_h = [str(d) for d in tqdm(df_sentences_list_h)]
#
corpus_h = df_sentences_list_h
corpus_embeddings_h = embedder.encode(corpus_h,show_progress_bar=True)
cos_scores_h = util.pytorch_cos_sim(query_embedding, corpus_embeddings_h)[0]
top_results_h = torch.topk(cos_scores_h, k=top_k)
for score, idx in zip(top_results_h[0], top_results_h[1]):
st.write(corpus_h[idx])
# st.table(hotel_subset.head())
# st.write("#")
#wordcloud = WordCloud(width = 3000, height = 2000, random_state=1, background_color='navy', colormap='rainbow', collocations=False, stopwords = STOPWORDS, mask=mask).generate(corpus[idx])
# wordcloud = WordCloud(collocations=False,stopwords=stopwords,background_color='black',max_words=35).generate(corpus[idx])
# fig, ax = plt.subplots()
# plt.imshow(wordcloud, interpolation='bilinear')
# plt.axis("off")
# plt.show()
# st.pyplot(fig)
# st.set_option('deprecation.showPyplotGlobalUse', False)
if __name__ == '__main__':
main()
# cos_scores = util.pytorch_cos_sim(query_embedding, sentence_embeddings)[0]
# top_results = torch.topk(cos_scores, k=top_k)
# st.write("\n\n======================\n\n")
# st.write("Query:", query)
# st.write("\nTop 5 most similar sentences in corpus using sentence embedding:")
#
# for score, idx in zip(top_results[0], top_results[1]):
# st.write("(Score: {:.4f})".format(score))
# row_dict = df.loc[df['all_review']== corpus[idx]]
# st.write("paper_id: " , row_dict['hotel_name'] , "\n")
# #wordcloud = WordCloud(width = 3000, height = 2000, random_state=1, background_color='navy', colormap='rainbow', collocations=False, stopwords = STOPWORDS, mask=mask).generate(corpus[idx])
# wordcloud = WordCloud(collocations=False,stopwords=stopwords,background_color='black',max_words=35).generate(corpus[idx])
# fig, ax = plt.subplots()
# plt.imshow(wordcloud, interpolation='bilinear')
# plt.axis("off")
# plt.show()
# st.pyplot(fig)
# st.set_option('deprecation.showPyplotGlobalUse', False)
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
#
# corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True)
# Find the closest 5 sentences of the corpus for each query sentence based on cosine similarity