File size: 6,577 Bytes
cbb3c45
e4ec328
2ec72fb
 
 
 
 
e4ec328
 
 
2ec72fb
 
 
 
 
 
55b50fa
 
 
 
 
 
2ec72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5df60d
 
 
 
 
2ec72fb
 
 
 
 
 
 
ec82a85
2ec72fb
 
 
 
 
 
 
 
1d5df6c
c5df60d
 
2ec72fb
 
c5df60d
2ec72fb
 
c5df60d
 
 
 
2ec72fb
 
 
 
 
55b50fa
2ec72fb
 
ec82a85
2ec72fb
55b50fa
 
 
 
 
 
2ec72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14b375b
2ec72fb
 
 
 
 
8808030
2ec72fb
 
 
 
8808030
2ec72fb
 
 
b896d7b
2ec72fb
c5df60d
 
 
 
18538c4
c5df60d
 
 
 
 
 
 
18538c4
c5df60d
 
2ec72fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8fa5b1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import spaces
import os, logging, time, argparse, random, tempfile, rembg, shlex, subprocess
import gradio as gr
import numpy as np
import torch
from PIL import Image
from functools import partial

subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation

from src.scheduler_perflow import PeRFlowScheduler
from diffusers import StableDiffusionPipeline, UNet2DConditionModel

def fill_background(img):
    img = np.array(img).astype(np.float32) / 255.0
    img = img[:, :, :3] * img[:, :, 3:4] + (1 - img[:, :, 3:4]) * 0.5
    img = Image.fromarray((img * 255.0).astype(np.uint8))
    return img

def merge_delta_weights_into_unet(pipe, delta_weights, org_alpha = 1.0):
    unet_weights = pipe.unet.state_dict()
    for key in delta_weights.keys():
        dtype = unet_weights[key].dtype
        try:
            unet_weights[key] = org_alpha * unet_weights[key].to(dtype=delta_weights[key].dtype) + delta_weights[key].to(device=unet_weights[key].device)
        except:
            unet_weights[key] = unet_weights[key].to(dtype=delta_weights[key].dtype)
        unet_weights[key] = unet_weights[key].to(dtype)
    pipe.unet.load_state_dict(unet_weights, strict=True)
    return pipe

def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    
if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

### TripoSR
model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
# adjust the chunk size to balance between speed and memory usage
model.renderer.set_chunk_size(8192)
model.to(device)


### PeRFlow-T2I
# pipe_t2i = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16, safety_checker=None)
# pipe_t2i = StableDiffusionPipeline.from_pretrained("stablediffusionapi/disney-pixar-cartoon", torch_dtype=torch.float16, safety_checker=None)
# delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict()
# pipe_t2i = merge_delta_weights_into_unet(pipe_t2i, delta_weights)

pipe_t2i = StableDiffusionPipeline.from_pretrained("hansyan/perflow-sd15-disney", torch_dtype=torch.float16, safety_checker=None)
pipe_t2i.scheduler = PeRFlowScheduler.from_config(pipe_t2i.scheduler.config, prediction_type="epsilon", num_time_windows=4)
pipe_t2i.to('cuda:0', torch.float16)


### gradio
rembg_session = rembg.new_session()

@spaces.GPU
def generate(text, seed):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    setup_seed(int(seed))
    prompt_prefix = "high quality, highly detailed, (best quality, masterpiece), "
    neg_prompt = "EasyNegative, drawn by bad-artist, sketch by bad-artist-anime, (bad_prompt:0.8), (artist name, signature, watermark:1.4), (ugly:1.2), (worst quality, poor details:1.4), bad-hands-5, badhandv4, blurry"
    text = prompt_prefix + text
    samples = pipe_t2i(
            prompt              = [text],
            negative_prompt     = [neg_prompt],
            height              = 512,
            width               = 512,
            # num_inference_steps = 6,
            # guidance_scale      = 7.5,
            num_inference_steps = 8,
            guidance_scale      = 7.5,
            output_type         = 'pt',
        ).images
    samples = samples.squeeze(0).permute(1, 2, 0).cpu().numpy()*255.
    samples = samples.astype(np.uint8)
    samples = Image.fromarray(samples[:, :, :3])
    return samples


@spaces.GPU
def render(image, mc_resolution=256, formats=["obj"]):
    image = Image.fromarray(image)
    image = image.resize((768, 768))
    image = remove_background(image, rembg_session)
    image = resize_foreground(image, 0.85)
    image = fill_background(image)
    
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)
    rv = []
    for format in formats:
        mesh_path = tempfile.NamedTemporaryFile(suffix=f".{format}", delete=False)
        mesh.export(mesh_path.name)
        rv.append(mesh_path.name)
    return rv[0]


# layout
css = """
h1 {
    text-align: center;
    display:block;
}
h2 {
    text-align: center;
    display:block;
}
h3 {
    text-align: center;
    display:block;
}
"""
with gr.Blocks(title="TripoSR", css=css) as interface:
    gr.Markdown(
    """
    # Instant Text-to-3D Mesh Demo

    ### [PeRFlow](https://github.com/magic-research/piecewise-rectified-flow)-T2I  +  [TripoSR](https://github.com/VAST-AI-Research/TripoSR)
    
    Two-stage synthesis: 1) generating images by PeRFlow-T2I; 2) rendering 3D assests. Here, we plug the PeRFlow-delta-weights of SD-v1.5 into the Disney-Pixar-Cartoon dreambooth.
    """
    )
    
    with gr.Column():
        with gr.Row():
                output_image = gr.Image(label='Generated Image', height=384,)

                output_model_obj = gr.Model3D(
                    label="Output 3D Model (OBJ Format)",
                    interactive=False,
                    height=384,
            )
    
    with gr.Row():
        textbox = gr.Textbox(label="Input Prompt", value="a husky dog")
        seed = gr.Textbox(label="Random Seed", value=42)


    gr.Markdown(
    """
    Images should be generated within 1 second normally, sometimes, it could a bit slow due to warm-up of the program. Here are some examples provided:
    - a policeman
    - a robot, close-up
    - a red car, side view
    - a blue mug
    - a burger
    - a tea pot
    - a wooden chair
    - a unicorn
    """
    )
    
    # activate
    textbox.submit(
        fn=generate,
        inputs=[textbox, seed],
        outputs=[output_image],
    ).success(
        fn=render,
        inputs=[output_image],
        outputs=[output_model_obj],
    )
    
    seed.submit(
        fn=generate,
        inputs=[textbox, seed],
        outputs=[output_image],
    ).success(
        fn=render,
        inputs=[output_image],
        outputs=[output_model_obj],
    )



if __name__ == '__main__':
    interface.queue(max_size=10)
    interface.launch()