File size: 9,398 Bytes
5f0fce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a85e2a
 
 
5f0fce1
 
 
e8956e4
5f0fce1
 
 
 
 
 
 
 
 
 
e8956e4
5f0fce1
 
 
 
 
 
 
 
 
 
 
515088a
 
5f0fce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515088a
5f0fce1
e8956e4
5f0fce1
 
e8956e4
5f0fce1
6699a4b
5f0fce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515088a
5f0fce1
e8956e4
5f0fce1
 
e8956e4
5f0fce1
6699a4b
5f0fce1
 
 
 
515088a
5f0fce1
 
 
 
 
 
 
 
 
 
 
 
515088a
5f0fce1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from gradio_imageslider import ImageSlider
import functools
import os
import tempfile
import diffusers
import gradio as gr
import imageio as imageio
import numpy as np
import spaces
import torch as torch
from PIL import Image
from tqdm import tqdm
from pathlib import Path
import gradio
from gradio.utils import get_cache_folder
from infer import lotus, lotus_video
import transformers

transformers.utils.move_cache()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def infer(path_input, seed):
    name_base, name_ext = os.path.splitext(os.path.basename(path_input))
    output_g, output_d = lotus(path_input, 'normal', seed, device)
    if not os.path.exists("files/output"):
        os.makedirs("files/output")
    g_save_path = os.path.join("files/output", f"{name_base}_g{name_ext}")
    d_save_path = os.path.join("files/output", f"{name_base}_d{name_ext}")
    output_g.save(g_save_path)
    output_d.save(d_save_path)
    return [path_input, g_save_path], [path_input, d_save_path]

def infer_video(path_input, seed):
    frames_g, frames_d = lotus_video(path_input, 'normal', seed, device)
    if not os.path.exists("files/output"):
        os.makedirs("files/output")
    name_base, _ = os.path.splitext(os.path.basename(path_input))
    g_save_path = os.path.join("files/output", f"{name_base}_g.mp4")
    d_save_path = os.path.join("files/output", f"{name_base}_d.mp4")
    imageio.mimsave(g_save_path, frames_g)
    imageio.mimsave(d_save_path, frames_d)
    return [g_save_path, d_save_path]

def run_demo_server():
    infer_gpu = spaces.GPU(functools.partial(infer))
    infer_video_gpu = spaces.GPU(functools.partial(infer_video))
    gradio_theme = gr.themes.Default()

    with gr.Blocks(
        theme=gradio_theme,
        title="LOTUS (Normal)",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            .tabs button.selected {
                font-size: 20px !important;
                color: crimson !important;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
            .md_feedback li {
                margin-bottom: 0px !important;
            }
        """,
        head="""
            <script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
            <script>
                window.dataLayer = window.dataLayer || [];
                function gtag() {dataLayer.push(arguments);}
                gtag('js', new Date());
                gtag('config', 'G-1FWSVCGZTG');
            </script>
        """,
    ) as demo:
        gr.Markdown(
            """
            # LOTUS: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
            <p align="center">
            <a title="Page" href="https://lotus3d.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/Project-Website-pink?logo=googlechrome&logoColor=white">
            </a>
            <a title="arXiv" href="https://arxiv.org/abs/2409.18124" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=white">
            </a>
            <a title="Github" href="https://github.com/EnVision-Research/Lotus" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/EnVision-Research/Lotus?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://x.com/haodongli00/status/1839524569058582884" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a>
        """
        )
        with gr.Tabs(elem_classes=["tabs"]):
            with gr.Tab("IMAGE"):
                with gr.Row():
                    with gr.Column():
                        image_input = gr.Image(
                            label="Input Image",
                            type="filepath",
                        )
                        seed = gr.Number(
                            label="Seed (only for Generative mode)",
                            minimum=0,
                            maximum=999999999,
                        )
                        with gr.Row():
                            image_submit_btn = gr.Button(
                                value="Predict Normal!", variant="primary"
                            )
                            image_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        image_output_g = ImageSlider(
                            label="Output (Generative)",
                            type="filepath",
                            interactive=False,
                            elem_classes="slider",
                            position=0.25,
                        )
                        with gr.Row():
                            image_output_d = ImageSlider(
                                label="Output (Discriminative)",
                                type="filepath",
                                interactive=False,
                                elem_classes="slider",
                                position=0.25,
                            )

                gr.Examples(
                    fn=infer_gpu,
                    examples=sorted([
                        [os.path.join("files", "images", name), 0]
                        for name in os.listdir(os.path.join("files", "images"))
                    ]),
                    inputs=[image_input, seed],
                    outputs=[image_output_g, image_output_d],
                    cache_examples=False,
                )

            with gr.Tab("VIDEO"):
                with gr.Row():
                    with gr.Column():
                        input_video = gr.Video(
                            label="Input Video",
                            autoplay=True,
                            loop=True,
                        )
                        seed = gr.Number(
                            label="Seed (only for Generative mode)",
                            minimum=0,
                            maximum=999999999,
                        )
                        with gr.Row():
                            video_submit_btn = gr.Button(
                                value="Predict Normal!", variant="primary"
                            )
                            video_reset_btn = gr.Button(value="Reset")
                    with gr.Column():
                        video_output_g = gr.Video(
                            label="Output (Generative)",
                            interactive=False,
                            autoplay=True,
                            loop=True,
                            show_share_button=True,
                        )
                        with gr.Row():
                            video_output_d = gr.Video(
                                label="Output (Discriminative)",
                                interactive=False,
                                autoplay=True,
                                loop=True,
                                show_share_button=True,
                            )

                gr.Examples(
                    fn=infer_video_gpu,
                    examples=sorted([
                        [os.path.join("files", "videos", name), 0]
                        for name in os.listdir(os.path.join("files", "videos"))
                    ]),
                    inputs=[input_video, seed],
                    outputs=[video_output_g, video_output_d],
                    cache_examples=False,
                )

        ### Image
        image_submit_btn.click(
            fn=infer_gpu,
            inputs=[image_input, seed],
            outputs=[image_output_g, image_output_d],
        )
        image_reset_btn.click(
            fn=lambda: (None, None, None),
            inputs=[],
            outputs=[image_output_g, image_output_d],
            queue=False,
        )

        ### Video
        video_submit_btn.click(
            fn=infer_video_gpu,
            inputs=[input_video, seed],
            outputs=[video_output_g, video_output_d],
            queue=True,
        )
        video_reset_btn.click(
            fn=lambda: (None, None, None),
            inputs=[],
            outputs=[video_output_g, video_output_d],
        )

        ### Server launch
        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )

def main():
    os.system("pip freeze")
    if os.path.exists("files/output"):
        os.system("rm -rf files/output")
    run_demo_server()

if __name__ == "__main__":
    main()