Spaces:
Running
on
Zero
Running
on
Zero
import cv2 | |
import numpy as np | |
import torch | |
from matplotlib import cm | |
import matplotlib.pyplot as plt | |
import logging | |
logger = logging.getLogger('root') | |
def tensor_to_numpy(tensor_in): | |
""" torch tensor to numpy array | |
""" | |
if tensor_in is not None: | |
if tensor_in.ndim == 3: | |
# (C, H, W) -> (H, W, C) | |
tensor_in = tensor_in.detach().cpu().permute(1, 2, 0).numpy() | |
elif tensor_in.ndim == 4: | |
# (B, C, H, W) -> (B, H, W, C) | |
tensor_in = tensor_in.detach().cpu().permute(0, 2, 3, 1).numpy() | |
else: | |
raise Exception('invalid tensor size') | |
return tensor_in | |
# def unnormalize(img_in, img_stats={'mean': [0.485, 0.456, 0.406], | |
# 'std': [0.229, 0.224, 0.225]}): | |
def unnormalize(img_in, img_stats={'mean': [0.5,0.5,0.5], 'std': [0.5,0.5,0.5]}): | |
""" unnormalize input image | |
""" | |
if torch.is_tensor(img_in): | |
img_in = tensor_to_numpy(img_in) | |
img_out = np.zeros_like(img_in) | |
for ich in range(3): | |
img_out[..., ich] = img_in[..., ich] * img_stats['std'][ich] | |
img_out[..., ich] += img_stats['mean'][ich] | |
img_out = (img_out * 255.0).astype(np.uint8) | |
return img_out | |
def normal_to_rgb(normal, normal_mask=None): | |
""" surface normal map to RGB | |
(used for visualization) | |
NOTE: x, y, z are mapped to R, G, B | |
NOTE: [-1, 1] are mapped to [0, 255] | |
""" | |
if torch.is_tensor(normal): | |
normal = tensor_to_numpy(normal) | |
normal_mask = tensor_to_numpy(normal_mask) | |
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True) | |
normal_norm[normal_norm < 1e-12] = 1e-12 | |
normal = normal / normal_norm | |
normal_rgb = (((normal + 1) * 0.5) * 255).astype(np.uint8) | |
if normal_mask is not None: | |
normal_rgb = normal_rgb * normal_mask # (B, H, W, 3) | |
return normal_rgb | |
def kappa_to_alpha(pred_kappa, to_numpy=True): | |
""" Confidence kappa to uncertainty alpha | |
Assuming AngMF distribution (introduced in https://arxiv.org/abs/2109.09881) | |
""" | |
if torch.is_tensor(pred_kappa) and to_numpy: | |
pred_kappa = tensor_to_numpy(pred_kappa) | |
if torch.is_tensor(pred_kappa): | |
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \ | |
+ ((torch.exp(- pred_kappa * np.pi) * np.pi) / (1 + torch.exp(- pred_kappa * np.pi))) | |
alpha = torch.rad2deg(alpha) | |
else: | |
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \ | |
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi))) | |
alpha = np.degrees(alpha) | |
return alpha | |
def visualize_normal(target_dir, prefixs, img, pred_norm, pred_kappa, | |
gt_norm, gt_norm_mask, pred_error, num_vis=-1): | |
""" visualize normal | |
""" | |
error_max = 60.0 | |
img = tensor_to_numpy(img) # (B, H, W, 3) | |
pred_norm = tensor_to_numpy(pred_norm) # (B, H, W, 3) | |
pred_kappa = tensor_to_numpy(pred_kappa) # (B, H, W, 1) | |
gt_norm = tensor_to_numpy(gt_norm) # (B, H, W, 3) | |
gt_norm_mask = tensor_to_numpy(gt_norm_mask) # (B, H, W, 1) | |
pred_error = tensor_to_numpy(pred_error) # (B, H, W, 1) | |
num_vis = len(prefixs) if num_vis == -1 else num_vis | |
for i in range(num_vis): | |
# img | |
img_ = unnormalize(img[i, ...]) | |
target_path = '%s/%s_img.png' % (target_dir, prefixs[i]) | |
plt.imsave(target_path, img_) | |
# pred_norm | |
target_path = '%s/%s_norm.png' % (target_dir, prefixs[i]) | |
plt.imsave(target_path, normal_to_rgb(pred_norm[i, ...])) | |
# pred_kappa | |
if pred_kappa is not None: | |
pred_alpha = kappa_to_alpha(pred_kappa[i, :, :, 0]) | |
target_path = '%s/%s_pred_alpha.png' % (target_dir, prefixs[i]) | |
plt.imsave(target_path, pred_alpha, vmin=0.0, vmax=error_max, cmap='jet') | |
# gt_norm, pred_error | |
if gt_norm is not None: | |
target_path = '%s/%s_gt.png' % (target_dir, prefixs[i]) | |
plt.imsave(target_path, normal_to_rgb(gt_norm[i, ...], gt_norm_mask[i, ...])) | |
E = pred_error[i, :, :, 0] * gt_norm_mask[i, :, :, 0] | |
target_path = '%s/%s_pred_error.png' % (target_dir, prefixs[i]) | |
plt.imsave(target_path, E, vmin=0, vmax=error_max, cmap='jet') | |