import cv2 import numpy as np import torch from matplotlib import cm import matplotlib.pyplot as plt import logging logger = logging.getLogger('root') def tensor_to_numpy(tensor_in): """ torch tensor to numpy array """ if tensor_in is not None: if tensor_in.ndim == 3: # (C, H, W) -> (H, W, C) tensor_in = tensor_in.detach().cpu().permute(1, 2, 0).numpy() elif tensor_in.ndim == 4: # (B, C, H, W) -> (B, H, W, C) tensor_in = tensor_in.detach().cpu().permute(0, 2, 3, 1).numpy() else: raise Exception('invalid tensor size') return tensor_in # def unnormalize(img_in, img_stats={'mean': [0.485, 0.456, 0.406], # 'std': [0.229, 0.224, 0.225]}): def unnormalize(img_in, img_stats={'mean': [0.5,0.5,0.5], 'std': [0.5,0.5,0.5]}): """ unnormalize input image """ if torch.is_tensor(img_in): img_in = tensor_to_numpy(img_in) img_out = np.zeros_like(img_in) for ich in range(3): img_out[..., ich] = img_in[..., ich] * img_stats['std'][ich] img_out[..., ich] += img_stats['mean'][ich] img_out = (img_out * 255.0).astype(np.uint8) return img_out def normal_to_rgb(normal, normal_mask=None): """ surface normal map to RGB (used for visualization) NOTE: x, y, z are mapped to R, G, B NOTE: [-1, 1] are mapped to [0, 255] """ if torch.is_tensor(normal): normal = tensor_to_numpy(normal) normal_mask = tensor_to_numpy(normal_mask) normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True) normal_norm[normal_norm < 1e-12] = 1e-12 normal = normal / normal_norm normal_rgb = (((normal + 1) * 0.5) * 255).astype(np.uint8) if normal_mask is not None: normal_rgb = normal_rgb * normal_mask # (B, H, W, 3) return normal_rgb def kappa_to_alpha(pred_kappa, to_numpy=True): """ Confidence kappa to uncertainty alpha Assuming AngMF distribution (introduced in https://arxiv.org/abs/2109.09881) """ if torch.is_tensor(pred_kappa) and to_numpy: pred_kappa = tensor_to_numpy(pred_kappa) if torch.is_tensor(pred_kappa): alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \ + ((torch.exp(- pred_kappa * np.pi) * np.pi) / (1 + torch.exp(- pred_kappa * np.pi))) alpha = torch.rad2deg(alpha) else: alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \ + ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi))) alpha = np.degrees(alpha) return alpha def visualize_normal(target_dir, prefixs, img, pred_norm, pred_kappa, gt_norm, gt_norm_mask, pred_error, num_vis=-1): """ visualize normal """ error_max = 60.0 img = tensor_to_numpy(img) # (B, H, W, 3) pred_norm = tensor_to_numpy(pred_norm) # (B, H, W, 3) pred_kappa = tensor_to_numpy(pred_kappa) # (B, H, W, 1) gt_norm = tensor_to_numpy(gt_norm) # (B, H, W, 3) gt_norm_mask = tensor_to_numpy(gt_norm_mask) # (B, H, W, 1) pred_error = tensor_to_numpy(pred_error) # (B, H, W, 1) num_vis = len(prefixs) if num_vis == -1 else num_vis for i in range(num_vis): # img img_ = unnormalize(img[i, ...]) target_path = '%s/%s_img.png' % (target_dir, prefixs[i]) plt.imsave(target_path, img_) # pred_norm target_path = '%s/%s_norm.png' % (target_dir, prefixs[i]) plt.imsave(target_path, normal_to_rgb(pred_norm[i, ...])) # pred_kappa if pred_kappa is not None: pred_alpha = kappa_to_alpha(pred_kappa[i, :, :, 0]) target_path = '%s/%s_pred_alpha.png' % (target_dir, prefixs[i]) plt.imsave(target_path, pred_alpha, vmin=0.0, vmax=error_max, cmap='jet') # gt_norm, pred_error if gt_norm is not None: target_path = '%s/%s_gt.png' % (target_dir, prefixs[i]) plt.imsave(target_path, normal_to_rgb(gt_norm[i, ...], gt_norm_mask[i, ...])) E = pred_error[i, :, :, 0] * gt_norm_mask[i, :, :, 0] target_path = '%s/%s_pred_error.png' % (target_dir, prefixs[i]) plt.imsave(target_path, E, vmin=0, vmax=error_max, cmap='jet')