from PIL import Image import matplotlib import numpy as np from PIL import Image import torch from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import resize def concatenate_images(*image_lists): # Ensure at least one image list is provided if not image_lists or not image_lists[0]: raise ValueError("At least one non-empty image list must be provided") # Determine the maximum width of any single row and the total height max_width = 0 total_height = 0 row_widths = [] row_heights = [] # Compute dimensions for each row for image_list in image_lists: if image_list: # Ensure the list is not empty width = sum(img.width for img in image_list) height = image_list[0].height # Assuming all images in the list have the same height max_width = max(max_width, width) total_height += height row_widths.append(width) row_heights.append(height) # Create a new image to concatenate everything into new_image = Image.new('RGB', (max_width, total_height)) # Concatenate each row of images y_offset = 0 for i, image_list in enumerate(image_lists): x_offset = 0 for img in image_list: new_image.paste(img, (x_offset, y_offset)) x_offset += img.width y_offset += row_heights[i] # Move the offset down to the next row return new_image def colorize_depth_map(depth, mask=None): cm = matplotlib.colormaps["Spectral"] # normalize depth = ((depth - depth.min()) / (depth.max() - depth.min())) # colorize img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # (h,w,3) depth_colored = (img_colored_np * 255).astype(np.uint8) if mask is not None: masked_image = np.zeros_like(depth_colored) masked_image[mask.numpy()] = depth_colored[mask.numpy()] depth_colored_img = Image.fromarray(masked_image) else: depth_colored_img = Image.fromarray(depth_colored) return depth_colored_img def resize_max_res( img: torch.Tensor, max_edge_resolution: int, resample_method: InterpolationMode = InterpolationMode.BILINEAR, ) -> torch.Tensor: """ Resize image to limit maximum edge length while keeping aspect ratio. Args: img (`torch.Tensor`): Image tensor to be resized. Expected shape: [B, C, H, W] max_edge_resolution (`int`): Maximum edge length (pixel). resample_method (`PIL.Image.Resampling`): Resampling method used to resize images. Returns: `torch.Tensor`: Resized image. """ assert 4 == img.dim(), f"Invalid input shape {img.shape}" original_height, original_width = img.shape[-2:] downscale_factor = min( max_edge_resolution / original_width, max_edge_resolution / original_height ) new_width = int(original_width * downscale_factor) new_height = int(original_height * downscale_factor) resized_img = resize(img, (new_height, new_width), resample_method, antialias=True) return resized_img def get_tv_resample_method(method_str: str) -> InterpolationMode: resample_method_dict = { "bilinear": InterpolationMode.BILINEAR, "bicubic": InterpolationMode.BICUBIC, "nearest": InterpolationMode.NEAREST_EXACT, "nearest-exact": InterpolationMode.NEAREST_EXACT, } resample_method = resample_method_dict.get(method_str, None) if resample_method is None: raise ValueError(f"Unknown resampling method: {resample_method}") else: return resample_method