Spaces:
Build error
Build error
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from maskrcnn_benchmark.modeling import registry | |
from maskrcnn_benchmark.layers import Scale, DFConv2d | |
from .loss import make_fcos_loss_evaluator | |
from .anchor_generator import make_center_anchor_generator | |
from .inference import make_fcos_postprocessor | |
class FCOSHead(torch.nn.Module): | |
def __init__(self, cfg): | |
super(FCOSHead, self).__init__() | |
# TODO: Implement the sigmoid version first. | |
num_classes = cfg.MODEL.FCOS.NUM_CLASSES - 1 | |
in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
use_gn = cfg.MODEL.FCOS.USE_GN | |
use_bn = cfg.MODEL.FCOS.USE_BN | |
use_dcn_in_tower = cfg.MODEL.FCOS.USE_DFCONV | |
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES | |
self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS | |
self.centerness_on_reg = cfg.MODEL.FCOS.CENTERNESS_ON_REG | |
cls_tower = [] | |
bbox_tower = [] | |
for i in range(cfg.MODEL.FCOS.NUM_CONVS): | |
if use_dcn_in_tower and \ | |
i == cfg.MODEL.FCOS.NUM_CONVS - 1: | |
conv_func = DFConv2d | |
else: | |
conv_func = nn.Conv2d | |
cls_tower.append( | |
conv_func( | |
in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=True | |
) | |
) | |
if use_gn: | |
cls_tower.append(nn.GroupNorm(32, in_channels)) | |
if use_bn: | |
cls_tower.append(nn.BatchNorm2d(in_channels)) | |
cls_tower.append(nn.ReLU()) | |
bbox_tower.append( | |
conv_func( | |
in_channels, | |
in_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
bias=True | |
) | |
) | |
if use_gn: | |
bbox_tower.append(nn.GroupNorm(32, in_channels)) | |
if use_bn: | |
bbox_tower.append(nn.BatchNorm2d(in_channels)) | |
bbox_tower.append(nn.ReLU()) | |
self.add_module('cls_tower', nn.Sequential(*cls_tower)) | |
self.add_module('bbox_tower', nn.Sequential(*bbox_tower)) | |
self.cls_logits = nn.Conv2d( | |
in_channels, num_classes, kernel_size=3, stride=1, | |
padding=1 | |
) | |
self.bbox_pred = nn.Conv2d( | |
in_channels, 4, kernel_size=3, stride=1, | |
padding=1 | |
) | |
self.centerness = nn.Conv2d( | |
in_channels, 1, kernel_size=3, stride=1, | |
padding=1 | |
) | |
# initialization | |
for modules in [self.cls_tower, self.bbox_tower, | |
self.cls_logits, self.bbox_pred, | |
self.centerness]: | |
for l in modules.modules(): | |
if isinstance(l, nn.Conv2d): | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
# initialize the bias for focal loss | |
prior_prob = cfg.MODEL.FCOS.PRIOR_PROB | |
bias_value = -math.log((1 - prior_prob) / prior_prob) | |
torch.nn.init.constant_(self.cls_logits.bias, bias_value) | |
self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)]) | |
def forward(self, x): | |
logits = [] | |
bbox_reg = [] | |
centerness = [] | |
for l, feature in enumerate(x): | |
cls_tower = self.cls_tower(feature) | |
box_tower = self.bbox_tower(feature) | |
logits.append(self.cls_logits(cls_tower)) | |
if self.centerness_on_reg: | |
centerness.append(self.centerness(box_tower)) | |
else: | |
centerness.append(self.centerness(cls_tower)) | |
bbox_pred = self.scales[l](self.bbox_pred(box_tower)) | |
if self.norm_reg_targets: | |
bbox_pred = F.relu(bbox_pred) | |
if self.training: | |
bbox_reg.append(bbox_pred) | |
else: | |
bbox_reg.append(bbox_pred * self.fpn_strides[l]) | |
else: | |
bbox_reg.append(torch.exp(bbox_pred)) | |
return logits, bbox_reg, centerness | |
class FCOSModule(torch.nn.Module): | |
""" | |
Module for FCOS computation. Takes feature maps from the backbone and | |
FCOS outputs and losses. Only Test on FPN now. | |
""" | |
def __init__(self, cfg): | |
super(FCOSModule, self).__init__() | |
head = FCOSHead(cfg) | |
box_selector_train = make_fcos_postprocessor(cfg, is_train=True) | |
box_selector_test = make_fcos_postprocessor(cfg, is_train=False) | |
loss_evaluator = make_fcos_loss_evaluator(cfg) | |
self.cfg = cfg | |
self.head = head | |
self.box_selector_train = box_selector_train | |
self.box_selector_test = box_selector_test | |
self.loss_evaluator = loss_evaluator | |
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES | |
if not cfg.MODEL.RPN_ONLY: | |
self.anchor_generator = make_center_anchor_generator(cfg) | |
def forward(self, images, features, targets=None): | |
""" | |
Arguments: | |
images (ImageList): images for which we want to compute the predictions | |
features (list[Tensor]): features computed from the images that are | |
used for computing the predictions. Each tensor in the list | |
correspond to different feature levels | |
targets (list[BoxList): ground-truth boxes present in the image (optional) | |
Returns: | |
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per | |
image. | |
losses (dict[Tensor]): the losses for the model during training. During | |
testing, it is an empty dict. | |
""" | |
box_cls, box_regression, centerness = self.head(features) | |
locations = self.compute_locations(features) | |
if self.training and targets is not None: | |
return self._forward_train( | |
locations, box_cls, box_regression, | |
centerness, targets, images.image_sizes | |
) | |
else: | |
return self._forward_test( | |
locations, box_cls, box_regression, | |
centerness, images.image_sizes | |
) | |
def _forward_train(self, locations, box_cls, box_regression, centerness, targets, image_sizes=None): | |
loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator( | |
locations, box_cls, box_regression, centerness, targets | |
) | |
losses = { | |
"loss_cls": loss_box_cls, | |
"loss_reg": loss_box_reg, | |
"loss_centerness": loss_centerness | |
} | |
if self.cfg.MODEL.RPN_ONLY: | |
return None, losses | |
else: | |
boxes = self.box_selector_train( | |
locations, box_cls, box_regression, | |
centerness, image_sizes | |
) | |
proposals = self.anchor_generator(boxes, image_sizes, centerness) | |
return proposals, losses | |
def _forward_test(self, locations, box_cls, box_regression, centerness, image_sizes): | |
boxes = self.box_selector_test( | |
locations, box_cls, box_regression, | |
centerness, image_sizes | |
) | |
if not self.cfg.MODEL.RPN_ONLY: | |
boxes = self.anchor_generator(boxes, image_sizes, centerness) | |
return boxes, {} | |
def compute_locations(self, features): | |
locations = [] | |
for level, feature in enumerate(features): | |
h, w = feature.size()[-2:] | |
locations_per_level = self.compute_locations_per_level( | |
h, w, self.fpn_strides[level], | |
feature.device | |
) | |
locations.append(locations_per_level) | |
return locations | |
def compute_locations_per_level(self, h, w, stride, device): | |
shifts_x = torch.arange( | |
0, w * stride, step=stride, | |
dtype=torch.float32, device=device | |
) | |
shifts_y = torch.arange( | |
0, h * stride, step=stride, | |
dtype=torch.float32, device=device | |
) | |
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) | |
shift_x = shift_x.reshape(-1) | |
shift_y = shift_y.reshape(-1) | |
locations = torch.stack((shift_x, shift_y), dim=1) + stride // 2 | |
return locations | |