harpreetsahota
commited on
Commit
•
0a74a8e
1
Parent(s):
fbaa379
Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,68 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
ChatPromptTemplate,
|
12 |
-
SystemMessagePromptTemplate,
|
13 |
-
HumanMessagePromptTemplate,
|
14 |
)
|
|
|
15 |
import chainlit as cl
|
16 |
|
17 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
18 |
-
|
19 |
-
system_template = """
|
20 |
-
Use the following pieces of context to answer the user's question.
|
21 |
-
|
22 |
-
Please respond as if you were Miles Morales from the Spider-Man comics and movies. General speech patterns: Uses contractions often, like "I'm," "can't," and "don't."
|
23 |
-
Might sprinkle in some Spanish, given his Puerto Rican heritage. References to modern pop culture, music, or tech. Miles is a brave young hero, grappling with his dual
|
24 |
-
heritage and urban life. He has a passion for music, especially hip-hop, and is also into art, being a graffiti artist himself. He speaks with an urban and youthful tone,
|
25 |
-
reflecting the voice of modern NYC youth. He might occasionally reference modern pop culture, his friends, or his school life.
|
26 |
-
If you don't know the answer, just say you're unsure. Don't try to make up an answer.
|
27 |
-
|
28 |
-
You can make inferences based on the context as long as it aligns with Miles' personality and experiences.
|
29 |
-
|
30 |
-
Example of your interaction:
|
31 |
-
|
32 |
-
User: "What did you think of the latest Spider-Man movie?"
|
33 |
-
MilesBot: "Haha, watching Spider-Man on screen is always surreal for me. But it's cool to see different takes on the web-slinger's story. Always reminds me of the Spider-Verse!"
|
34 |
-
|
35 |
-
Example of your response:
|
36 |
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
messages = [
|
47 |
-
SystemMessagePromptTemplate.from_template(system_template),
|
48 |
-
HumanMessagePromptTemplate.from_template("{question}"),
|
49 |
-
]
|
50 |
-
prompt = ChatPromptTemplate(messages=messages)
|
51 |
-
chain_type_kwargs = {"prompt": prompt}
|
52 |
-
|
53 |
-
@cl.author_rename
|
54 |
-
def rename(orig_author: str):
|
55 |
-
rename_dict = {"RetrievalQA": "Crawling the Spiderverse"}
|
56 |
-
return rename_dict.get(orig_author, orig_author)
|
57 |
|
58 |
@cl.on_chat_start
|
59 |
-
async def
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
store = LocalFileStore("./cache/")
|
68 |
-
core_embeddings_model = OpenAIEmbeddings()
|
69 |
-
embedder = CacheBackedEmbeddings.from_bytes_store(
|
70 |
-
core_embeddings_model, store, namespace=core_embeddings_model.model
|
71 |
)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
ChatOpenAI(model="gpt-4", temperature=0, streaming=True),
|
77 |
-
chain_type="stuff",
|
78 |
-
return_source_documents=True,
|
79 |
-
retriever=docsearch.as_retriever(),
|
80 |
-
chain_type_kwargs = {"prompt": prompt}
|
81 |
)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
|
86 |
-
cl.user_session.set("
|
87 |
|
88 |
|
89 |
@cl.on_message
|
90 |
async def main(message):
|
91 |
-
|
92 |
-
|
93 |
-
stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"]
|
94 |
-
)
|
95 |
-
cb.answer_reached = True
|
96 |
-
res = await chain.acall(message, callbacks=[cb], )
|
97 |
-
|
98 |
-
answer = res["result"]
|
99 |
-
source_elements = []
|
100 |
-
visited_sources = set()
|
101 |
|
102 |
-
|
103 |
-
docs = res["source_documents"]
|
104 |
-
metadatas = [doc.metadata for doc in docs]
|
105 |
-
all_sources = [m["source"] for m in metadatas]
|
106 |
|
107 |
-
for
|
108 |
-
|
109 |
-
continue
|
110 |
-
visited_sources.add(source)
|
111 |
-
# Create the text element referenced in the message
|
112 |
-
source_elements.append(
|
113 |
-
cl.Text(content="https://www.imdb.com" + source, name="Review URL")
|
114 |
-
)
|
115 |
|
116 |
-
if
|
117 |
-
|
118 |
-
else:
|
119 |
-
answer += "\nNo sources found"
|
120 |
|
121 |
-
await
|
|
|
1 |
+
import os
|
2 |
+
import openai
|
3 |
+
|
4 |
+
from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
|
5 |
+
from llama_index.callbacks.base import CallbackManager
|
6 |
+
from llama_index import (
|
7 |
+
LLMPredictor,
|
8 |
+
ServiceContext,
|
9 |
+
StorageContext,
|
10 |
+
load_index_from_storage,
|
|
|
|
|
|
|
11 |
)
|
12 |
+
from llama_index.llms import OpenAI
|
13 |
import chainlit as cl
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
openai.api_key = os.environ.get("OPENAI_API_KEY")
|
17 |
|
18 |
+
try:
|
19 |
+
# rebuild storage context
|
20 |
+
storage_context = StorageContext.from_defaults(persist_dir="./storage")
|
21 |
+
# load index
|
22 |
+
index = load_index_from_storage(storage_context)
|
23 |
+
except:
|
24 |
+
from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
|
25 |
|
26 |
+
documents = SimpleDirectoryReader(input_files=["hitchhikers.pdf"]).load_data()
|
27 |
+
index = GPTVectorStoreIndex.from_documents(documents)
|
28 |
+
index.storage_context.persist()
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
@cl.on_chat_start
|
32 |
+
async def factory():
|
33 |
+
llm_predictor = LLMPredictor(
|
34 |
+
llm=OpenAI(
|
35 |
+
temperature=0,
|
36 |
+
model="ft:gpt-3.5-turbo-0613:personal::7ru6l1bi",
|
37 |
+
streaming=True,
|
38 |
+
context_window=2048,
|
39 |
+
),
|
|
|
|
|
|
|
|
|
40 |
)
|
41 |
+
service_context = ServiceContext.from_defaults(
|
42 |
+
llm_predictor=llm_predictor,
|
43 |
+
chunk_size=512,
|
44 |
+
callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
|
|
|
|
|
|
|
|
|
|
|
45 |
)
|
46 |
|
47 |
+
query_engine = index.as_query_engine(
|
48 |
+
service_context=service_context,
|
49 |
+
streaming=True,
|
50 |
+
)
|
51 |
|
52 |
+
cl.user_session.set("query_engine", query_engine)
|
53 |
|
54 |
|
55 |
@cl.on_message
|
56 |
async def main(message):
|
57 |
+
query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine
|
58 |
+
response = await cl.make_async(query_engine.query)(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
response_message = cl.Message(content="")
|
|
|
|
|
|
|
61 |
|
62 |
+
for token in response.response_gen:
|
63 |
+
await response_message.stream_token(token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
if response.response_txt:
|
66 |
+
response_message.content = response.response_txt
|
|
|
|
|
67 |
|
68 |
+
await response_message.send()
|