update code
Browse files- main.py +7 -2
- requirements.txt +0 -0
- utils/helpers.py +13 -2
main.py
CHANGED
@@ -10,7 +10,7 @@ import models.face_classifier as classifier
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from PIL import Image
|
12 |
from rembg import remove
|
13 |
-
from utils.helpers import image_to_base64, calculate_mask_area, process_image
|
14 |
|
15 |
|
16 |
dotenv.load_dotenv()
|
@@ -74,9 +74,14 @@ async def predict_image(file: UploadFile = File(...)):
|
|
74 |
# add original image base 64 as original image:
|
75 |
image_bg_removed = image_bg_removed.convert("RGB")
|
76 |
|
|
|
|
|
|
|
|
|
77 |
response = {
|
78 |
"original_image": image_to_base64(image_bg_removed),
|
79 |
-
"segmentation_results":results
|
|
|
80 |
}
|
81 |
|
82 |
# Kembalikan hasil klasifikasi
|
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from PIL import Image
|
12 |
from rembg import remove
|
13 |
+
from utils.helpers import combine_images, image_to_base64, calculate_mask_area, process_image
|
14 |
|
15 |
|
16 |
dotenv.load_dotenv()
|
|
|
74 |
# add original image base 64 as original image:
|
75 |
image_bg_removed = image_bg_removed.convert("RGB")
|
76 |
|
77 |
+
# Combine the original image and masks
|
78 |
+
combined_image = combine_images(pil_image, results)
|
79 |
+
combined_image_base64 = image_to_base64(combined_image, "PNG")
|
80 |
+
|
81 |
response = {
|
82 |
"original_image": image_to_base64(image_bg_removed),
|
83 |
+
"segmentation_results":results,
|
84 |
+
"combined_image": combined_image_base64
|
85 |
}
|
86 |
|
87 |
# Kembalikan hasil klasifikasi
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|
utils/helpers.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from PIL import Image
|
2 |
import io
|
3 |
import base64
|
4 |
import numpy as np
|
@@ -28,4 +28,15 @@ def process_image(input_image: Image.Image) -> Image.Image:
|
|
28 |
# Apply the mask to the alpha channel
|
29 |
data[..., 3][black_areas] = 0
|
30 |
|
31 |
-
return Image.fromarray(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageChops, ImageEnhance
|
2 |
import io
|
3 |
import base64
|
4 |
import numpy as np
|
|
|
28 |
# Apply the mask to the alpha channel
|
29 |
data[..., 3][black_areas] = 0
|
30 |
|
31 |
+
return Image.fromarray(data)
|
32 |
+
|
33 |
+
def combine_images(original_image: Image.Image, masks: list) -> Image.Image:
|
34 |
+
combined = original_image.copy()
|
35 |
+
for mask in masks:
|
36 |
+
if mask['label'] == 'background':
|
37 |
+
continue
|
38 |
+
mask_image = Image.open(io.BytesIO(base64.b64decode(mask['mask'])))
|
39 |
+
mask_image = mask_image.convert("L") # Convert mask to grayscale
|
40 |
+
mask_image = ImageEnhance.Brightness(mask_image).enhance(0.5) # Adjust the brightness to make it more visible
|
41 |
+
combined = ImageChops.add(combined, mask_image)
|
42 |
+
return combined
|