from PIL import Image, ImageChops, ImageEnhance import io import base64 import numpy as np def image_to_base64(image: Image.Image,format="JPEG") -> str: buffered = io.BytesIO() image.save(buffered, format=format) return base64.b64encode(buffered.getvalue()).decode("utf-8") def calculate_mask_area(mask: Image.Image, background=False) -> int: mask_array = np.array(mask) non_zero_pixels = np.count_nonzero(mask_array) return non_zero_pixels def process_image(input_image: Image.Image, fill_color:tuple = (255, 255, 255)) -> Image.Image: data = np.array(input_image) # Split the image into its component channels # Create a mask where all pixels that are black (0) will have 0 alpha black_areas = data == 0 rgba_image = Image.new('RGBA', input_image.size) rgba_data = np.array(rgba_image) # Copy the grayscale data to all RGB channels rgba_data[..., 0] = fill_color[0] rgba_data[..., 1] = fill_color[1] rgba_data[..., 2] = fill_color[2] # Set alpha channel to 255 (fully opaque) for all pixels rgba_data[..., 3] = 255 # Apply the mask to the alpha channel rgba_data[..., 3][black_areas] = 0 return Image.fromarray(rgba_data) def combine_images(original_image: Image.Image, masks: list) -> Image.Image: combined = original_image.copy() for mask in masks: if mask['label'] == 'background': continue mask_image = Image.open(io.BytesIO(base64.b64decode(mask['mask']))) mask_image = mask_image.convert("L") # Convert mask to grayscale mask_image = ImageEnhance.Brightness(mask_image).enhance(0.5) # Adjust the brightness to make it more visible color_mask = Image.new("RGBA", original_image.size, (255, 0, 0, 128)) # Red color with transparency combined.paste(color_mask, (0, 0), mask_image) return combined