from PIL import Image, ImageChops, ImageEnhance import io import base64 import numpy as np def image_to_base64(image: Image.Image,format="JPEG") -> str: buffered = io.BytesIO() image.save(buffered, format=format) return base64.b64encode(buffered.getvalue()).decode("utf-8") def calculate_mask_area(mask: Image.Image, background=False) -> int: mask_array = np.array(mask) non_zero_pixels = np.count_nonzero(mask_array) return non_zero_pixels def process_image(input_image: Image.Image) -> Image.Image: if input_image.mode != 'RGBA': input_image = input_image.convert('RGBA') data = np.array(input_image) # Split the image into its component channels r, g, b, a = data.T # Create a mask where all pixels that are black (0,0,0) will have 0 alpha black_areas = (r == 0) & (g == 0) & (b == 0) # Apply the mask to the alpha channel data[..., 3][black_areas] = 0 return Image.fromarray(data) def combine_images(original_image: Image.Image, masks: list) -> Image.Image: combined = original_image.copy() for mask in masks: if mask['label'] == 'background': continue mask_image = Image.open(io.BytesIO(base64.b64decode(mask['mask']))) mask_image = mask_image.convert("L") # Convert mask to grayscale mask_image = ImageEnhance.Brightness(mask_image).enhance(0.5) # Adjust the brightness to make it more visible color_mask = Image.new("RGBA", original_image.size, (255, 0, 0, 128)) # Red color with transparency combined.paste(color_mask, (0, 0), mask_image) return combined