RegBot4.0 / models /llamaCustom.py
Zwea Htet
added langchain to ui
19f4fce
raw
history blame
3.54 kB
import os
import pickle
from json import dumps, loads
from typing import Any, List, Mapping, Optional
import numpy as np
import openai
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import HfFileSystem
from langchain.llms.base import LLM
from llama_index import (
Document,
GPTVectorStoreIndex,
LLMPredictor,
PromptHelper,
ServiceContext,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage,
)
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# from utils.customLLM import CustomLLM
load_dotenv()
# openai.api_key = os.getenv("OPENAI_API_KEY")
fs = HfFileSystem()
# define prompt helper
# set maximum input size
CONTEXT_WINDOW = 2048
# set number of output tokens
NUM_OUTPUT = 525
# set maximum chunk overlap
CHUNK_OVERLAP_RATION = 0.2
prompt_helper = PromptHelper(
context_window=CONTEXT_WINDOW,
num_output=NUM_OUTPUT,
chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
)
llm_model_name = "bigscience/bloom-560m"
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
model = AutoModelForCausalLM.from_pretrained(llm_model_name, config="T5Config")
model_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
# device=0, # GPU device number
# max_length=512,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7,
)
class CustomLLM(LLM):
pipeline = model_pipeline
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
prompt_length = len(prompt)
response = self.pipeline(prompt, max_new_tokens=525)[0]["generated_text"]
# only return newly generated tokens
return response[prompt_length:]
@property
def _identifying_params(self) -> Mapping[str, Any]:
return {"name_of_model": self.model_name}
@property
def _llm_type(self) -> str:
return "custom"
class LlamaCustom:
# define llm
llm_predictor = LLMPredictor(llm=CustomLLM())
service_context = ServiceContext.from_defaults(
llm_predictor=llm_predictor, prompt_helper=prompt_helper
)
def __init__(self, name: str) -> None:
self.vector_index = self.initialize_index(index_name=name)
def initialize_index(self, index_name):
file_path = f"./vectorStores/{index_name}"
if os.path.exists(path=file_path):
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir=file_path)
# local load index access
index = load_index_from_storage(storage_context)
# huggingface repo load access
# with fs.open(file_path, "r") as file:
# index = pickle.loads(file.readlines())
return index
else:
# documents = prepare_data(r"./assets/regItems.json")
documents = SimpleDirectoryReader(input_dir="./assets/pdf").load_data()
index = GPTVectorStoreIndex.from_documents(
documents, service_context=self.service_context
)
# local write access
index.storage_context.persist(file_path)
# huggingface repo write access
# with fs.open(file_path, "w") as file:
# file.write(pickle.dumps(index))
return index
def get_response(self, query_str):
print("query_str: ", query_str)
query_engine = self.vector_index.as_query_engine()
response = query_engine.query(query_str)
return str(response)