Spaces:
Runtime error
Runtime error
Zwea Htet
commited on
Commit
•
991fc6b
1
Parent(s):
215cfd3
fixed ui
Browse files- models/llamaCustom.py +29 -19
models/llamaCustom.py
CHANGED
@@ -36,25 +36,32 @@ NUM_OUTPUT = 525
|
|
36 |
# set maximum chunk overlap
|
37 |
CHUNK_OVERLAP_RATION = 0.2
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
model=
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
class CustomLLM(LLM):
|
57 |
-
|
|
|
|
|
58 |
|
59 |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
60 |
prompt_length = len(prompt)
|
@@ -65,17 +72,19 @@ class CustomLLM(LLM):
|
|
65 |
|
66 |
@property
|
67 |
def _identifying_params(self) -> Mapping[str, Any]:
|
68 |
-
return {"name_of_model": llm_model_name}
|
69 |
|
70 |
@property
|
71 |
def _llm_type(self) -> str:
|
72 |
return "custom"
|
73 |
|
|
|
74 |
class LlamaCustom:
|
75 |
def __init__(self, model_name: str) -> None:
|
76 |
self.vector_index = self.initialize_index(model_name=model_name)
|
77 |
|
78 |
-
|
|
|
79 |
index_name = model_name.split("/")[-1]
|
80 |
|
81 |
file_path = f"./vectorStores/{index_name}"
|
@@ -97,7 +106,8 @@ class LlamaCustom:
|
|
97 |
num_output=NUM_OUTPUT,
|
98 |
chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
|
99 |
)
|
100 |
-
|
|
|
101 |
service_context = ServiceContext.from_defaults(
|
102 |
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
103 |
)
|
|
|
36 |
# set maximum chunk overlap
|
37 |
CHUNK_OVERLAP_RATION = 0.2
|
38 |
|
39 |
+
|
40 |
+
@st.cache_resource
|
41 |
+
def load_model(mode_name: str):
|
42 |
+
# llm_model_name = "bigscience/bloom-560m"
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(mode_name)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(mode_name, config="T5Config")
|
45 |
+
|
46 |
+
pipe = pipeline(
|
47 |
+
task="text-generation",
|
48 |
+
model=model,
|
49 |
+
tokenizer=tokenizer,
|
50 |
+
# device=0, # GPU device number
|
51 |
+
# max_length=512,
|
52 |
+
do_sample=True,
|
53 |
+
top_p=0.95,
|
54 |
+
top_k=50,
|
55 |
+
temperature=0.7,
|
56 |
+
)
|
57 |
+
|
58 |
+
return pipe
|
59 |
|
60 |
|
61 |
class CustomLLM(LLM):
|
62 |
+
def __init__(self, model_name: str):
|
63 |
+
self.llm_model_name = model_name
|
64 |
+
self.pipeline = load_model(mode_name=model_name)
|
65 |
|
66 |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
67 |
prompt_length = len(prompt)
|
|
|
72 |
|
73 |
@property
|
74 |
def _identifying_params(self) -> Mapping[str, Any]:
|
75 |
+
return {"name_of_model": self.llm_model_name}
|
76 |
|
77 |
@property
|
78 |
def _llm_type(self) -> str:
|
79 |
return "custom"
|
80 |
|
81 |
+
|
82 |
class LlamaCustom:
|
83 |
def __init__(self, model_name: str) -> None:
|
84 |
self.vector_index = self.initialize_index(model_name=model_name)
|
85 |
|
86 |
+
@st.cache_resource
|
87 |
+
def initialize_index(_self, model_name: str):
|
88 |
index_name = model_name.split("/")[-1]
|
89 |
|
90 |
file_path = f"./vectorStores/{index_name}"
|
|
|
106 |
num_output=NUM_OUTPUT,
|
107 |
chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
|
108 |
)
|
109 |
+
|
110 |
+
llm_predictor = LLMPredictor(llm=CustomLLM(model_name=model_name))
|
111 |
service_context = ServiceContext.from_defaults(
|
112 |
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
113 |
)
|