from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.llms.openai import OpenAI # from llama_index.llms.replicate import Replicate from dotenv import load_dotenv import os load_dotenv() # llm_mixtral_8x7b = HuggingFaceInferenceAPI( # model_name="mistralai/Mixtral-8x7B-Instruct-v0.1", # token=os.getenv("HUGGINGFACE_API_TOKEN"), # ) # download the model from the Hugging Face Hub and run it locally # llm_mixtral_8x7b = HuggingFaceLLM(model_name="mistralai/Mixtral-8x7B-Instruct-v0.1") # llm_llama_2_7b_chat = HuggingFaceInferenceAPI( # model_name="meta-llama/Llama-2-7b-chat-hf", # token=os.getenv("HUGGINGFACE_API_TOKEN"), # ) # llm_bloomz_560m = HuggingFaceInferenceAPI( # model_name="bigscience/bloomz-560m", # token=os.getenv("HUGGINGFACE_API_TOKEN"), # ) llm_bloomz_560m = HuggingFaceLLM(model_name="bigscience/bloomz-560m") # llm_gpt_3_5_turbo = OpenAI( # api_key=os.getenv("OPENAI_API_KEY"), # ) llm_gpt_3_5_turbo_0125 = OpenAI( model="gpt-3.5-turbo-0125", api_key=os.getenv("OPENAI_API_KEY"), ) # llm_gpt_4_0125 = OpenAI( # model="gpt-4-0125-preview", # api_key=os.getenv("OPENAI_API_KEY"), # ) # llm_llama_13b_v2_replicate = Replicate( # model="meta/llama-2-13b-chat", # prompt_key=os.getenv("REPLICATE_API_KEY"), # )