Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 31,926 Bytes
dff685f e4588a1 dff685f e4588a1 dff685f e4588a1 dff685f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
import yaml
import gradio as gr
import pandas as pd
import numpy as np
import altair as alt
import plotly.express as px
import pickle
import os
from src.assets.css_html_js import custom_css
from src.assets.awesome_mapping import paper_mapping, section_mapping, bibtex_mapping, venue_mapping, citation_key_mapping
TITLE = "🔥CNN Structured Pruning Leaderboard"
PAPER_LINK = 'https://arxiv.org/abs/2303.00566'
PAPER_LINK_IEEE = 'https://ieeexplore.ieee.org/document/10330640'
AWESOME_PRUNING_LINK = 'https://github.com/he-y/Awesome-Pruning'
BIBTEX = '''
@article{he2023structured,
author={He, Yang and Xiao, Lingao},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Structured Pruning for Deep Convolutional Neural Networks: A Survey},
year={2023},
volume={},
number={},
pages={1-20},
doi={10.1109/TPAMI.2023.3334614}}
'''
INTRO = f"""
Welcome to our dedicated site for the survey paper: "[Structured Pruning for Deep Convolutional Neural Networks: A Survey]({PAPER_LINK})".
Our survey is accepted by IEEE T-PAMI. Links include [arXiv]({PAPER_LINK}) and [IEEE Xplore]({PAPER_LINK_IEEE}).
Github Repo: [Awesome Pruning: A curated list of neural network pruning resources]({AWESOME_PRUNING_LINK}).
This platform serves as a repository and visual representation of the benchmarks from studies covered in our survey.
Here, you can explore the reported accuracy and FLOPs metrics from various papers, providing an at-a-glance view of the advancements and methodologies in the domain of structured pruning.
If you find this website helpful, please consider citing our paper 😊
"""
COLS_KEEP = ['sec', 'year', 'method', 'model', 'acc', 'acc-pruned', 'acc-change', 'flops-pruned', 'flops-drop', 'param-pruned', 'param-drop', 'dataset']
COLS = ['sec', 'year', 'method', 'model', 'acc', 'acc-pruned', 'acc-change', 'flops', 'flops-pruned', 'flops-drop', 'param', 'param-pruned', 'param-drop', 'dataset']
MISC_GROUP = ['model', 'dataset', 'method', 'year', 'sec']
ACC_GROUP = ['acc', 'acc-pruned', 'acc-change']
FLOPS_GROUP = ['flops', 'flops-pruned', 'flops-drop']
PARAM_GROUP = ['param', 'param-pruned', 'param-drop']
# Define a mapping from original headers to custom headers
CUSTOM_HEADER_MAP = {
'sec': 'Section',
'year': 'Year',
'method': 'Method',
'model': 'Model',
'acc': 'Acc',
'acc-pruned': 'Acc Pruned',
# 'acc-change': 'Acc. Δ (%)',
'acc-change': 'Acc ↓ (%)',
'flops': 'FLOPs (M)',
'flops-pruned': 'FLOPs Pruned (M)',
'flops-drop': 'FLOPs ↓ (%)',
'param': 'Params (M)',
'param-pruned': 'Params Pruned (M)',
'param-drop': 'Params ↓ (%)',
'dataset': 'Dataset'
}
CUSTOM_HEADER_MAP.update({v: k for k, v in CUSTOM_HEADER_MAP.items()})
df = pickle.load(open("src/assets/data.pkl", "rb"))
baseline = pickle.load(open("src/assets/baseline.pkl", "rb"))
def filter_table_combined(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop):
search_boxes = [search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop]
column_names = ['model', 'method', 'year', 'sec', 'acc', 'acc-pruned', 'acc-change', 'flops', 'flops-pruned', 'flops-drop', 'param', 'param-pruned', 'param-drop']
filtered_df = leaderboard.copy()
for idx, (q, col_name) in enumerate(zip(search_boxes, column_names)):
if q != '':
if idx == 3: # Special case for section
if q[0] != '2': # Does not start with 2
q = "2." + q[0]
elif len(q) < 5:
filtered_df = filtered_df[filtered_df[col_name].str.slice(0, len(q)).str.lower() == q.strip().lower()]
else:
filtered_df = filtered_df[filtered_df[col_name].astype(str).str.lower() == q.strip().lower()]
elif idx < 4: # Similar to original filter_table
filtered_df = filtered_df[filtered_df[col_name].astype(str).str.contains(q, case=False)]
else: # Similar to original filter_table_by_acc
filtered_df[col_name].replace('', np.nan, inplace=True)
filtered_df.dropna(subset=[col_name], inplace=True)
if idx in [4, 5, 9, 12]:
filtered_df = filtered_df[filtered_df[col_name].astype(float) > float(q)]
else:
filtered_df = filtered_df[filtered_df[col_name].astype(float) < float(q)]
return filtered_df
# Function to update columns
def update_columns(leaderboard, columns: list):
return leaderboard[leaderboard.columns.intersection(columns)].rename(columns=CUSTOM_HEADER_MAP)
def update_table(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop):
updated_df = filter_table_combined(leaderboard, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop)
updated_df = update_columns(updated_df, COLS)
return updated_df
def update_text(x):
return CUSTOM_HEADER_MAP[x]
def get_shown_columns(misc_checkbox_group, acc_checkbox_group, flops_checkbox_group, param_checkbox_group):
# return all columns if all checkbox groups are selected
updated_columns = [CUSTOM_HEADER_MAP[col] for col in misc_checkbox_group + acc_checkbox_group + flops_checkbox_group + param_checkbox_group]
print("Columns updated to", updated_columns, "\n")
return updated_columns
def make_plot(data, y_axis='acc-change', x_axis='flops-drop', color_sorting='model'):
y_axis = CUSTOM_HEADER_MAP[y_axis]
x_axis = x_axis
color_sorting = color_sorting
# Drop rows where y_axis and x_axis columns are null
data.replace('', np.nan, inplace=True)
data.dropna(subset=[y_axis, x_axis], how='any', inplace=True)
# Convert 'year' to string
data[CUSTOM_HEADER_MAP['year']] = data[CUSTOM_HEADER_MAP['year']].astype(str)
# Sort by y_axis
data.sort_values(by=[y_axis], ascending=[False], inplace=True)
# Get min and max for x and y axes
x_min, x_max = data[x_axis].min(), data[x_axis].max()
y_min, y_max = data[y_axis].min(), data[y_axis].max()
if data is None or data.empty:
# plot with title:
# "No results found or bad query"
return alt.Chart(pd.DataFrame({'x': [], 'y': []})).mark_point().encode().properties(title="No results found or bad query")
# Create a selection that filters data based on the legend
legend_selection = alt.selection_point(fields=[color_sorting], bind='legend')
# Create a selection for hover
hover_selection = alt.selection_point(on='mouseover', nearest=False, empty=True)
# Create Altair scatter plot
scatter = alt.Chart(data).mark_point().encode(
x=alt.X(x_axis, title=x_axis, scale=alt.Scale(domain=(x_min-2, x_max+2))),
y=alt.Y(y_axis, title=y_axis, scale=alt.Scale(domain=(y_min-2, y_max+2))),
color=color_sorting,
tooltip=[CUSTOM_HEADER_MAP['method'], CUSTOM_HEADER_MAP['model'], CUSTOM_HEADER_MAP['acc-pruned'], CUSTOM_HEADER_MAP['acc-change'], CUSTOM_HEADER_MAP['flops-pruned'], CUSTOM_HEADER_MAP['flops-drop'], CUSTOM_HEADER_MAP['year'], CUSTOM_HEADER_MAP['sec']],
opacity=alt.condition(hover_selection, alt.value(1), alt.value(0.2))
).add_params(
legend_selection,
hover_selection,
).transform_filter(
legend_selection
).interactive()
return scatter
def item_selected(leaderboard: gr.Dataframe, evt: gr.SelectData):
# evt.index
# evt.value
item = leaderboard.loc[leaderboard[CUSTOM_HEADER_MAP['method']] == evt.value]
if len(item) == 0:
return "✖️ Invalid cell! Please click on **Method Name** to see details...", "✖️ Invalid cell! Please click on **Method Name** to see details..."
elif len(item) > 1:
item = item.iloc[0]
section = item[CUSTOM_HEADER_MAP['sec']]
method = item[CUSTOM_HEADER_MAP['method']]
# check if type is pandas Series
if type(section) is pd.Series:
section = section.iloc[0]
if type(method) is pd.Series:
method = method.iloc[0]
sec_record = section_mapping[section] # (section, sub section)
awesome_record = paper_mapping[method] # (paper, code)
bibtex_record = bibtex_mapping[method] # (bibtex, score)
# replace any KEY with value in venue_mapping
for k, v in venue_mapping.items():
if k in bibtex_record:
bibtex_record = bibtex_record.replace(k, v)
# process section: (section, sub section)
main_section = sec_record[0]
sub_section = sec_record[1]
# process awesome_record: " | paper | conf | type | code | "
paper = "Not Recorded 😭"
conf = "Not Recorded 😭"
code = "Not Recorded 😭"
if awesome_record is not None:
splitted = awesome_record.split('|')
paper = splitted[1].strip()
conf = splitted[2].strip()
code = splitted[-2].strip()
if code == "" or code == "-":
code = "Not Recorded 😭"
text = f"""
Section: {main_section} → {sub_section} ({section})
Paper: {paper}
Venue: {conf}
Code: {code}
"""
return text, bibtex_record
def create_tab(app, dataset_name, dataset_id, df):
dataset = dataset_name.lower()
df_dataset = df[df['dataset'] == dataset]
original_df_pd = df_dataset.copy()
if dataset == 'cifar10':
dataset_label = 'CIFAR-10'
elif dataset == 'cifar100':
dataset_label = 'CIFAR-100'
elif dataset == 'imagenet':
dataset_label = 'ImageNet-1K'
else:
raise ValueError(f"Unknown dataset: {dataset}")
with gr.TabItem(dataset_label, id=dataset_id):
with gr.Row(equal_height=True):
with gr.Column():
with gr.Group():
with gr.Row():
gr.Markdown("**Search by below options:**", elem_classes="markdown-subtitle")
with gr.Row():
search_box = gr.Textbox(
placeholder="[press enter to search]",
label="Model",
show_label=True,
)
search_box_method = gr.Textbox(
placeholder="[press enter to search]",
label="Method",
show_label=True,
)
search_box_year = gr.Textbox(
placeholder="[press enter to search]",
label="Year",
show_label=True,
)
search_box_section = gr.Textbox(
placeholder="[press enter to search]",
label="Section",
show_label=True,
)
with gr.Row():
acc_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline Accuracy",
info="E.g., `90` means search for baseline accuracy > 90%.",
show_label=True,
)
acc_box = gr.Textbox(
placeholder="[press enter to search]",
label="Accuracy After Pruning",
info="E.g., `90` means search for accuracy after pruning > 90%.",
show_label=True,
)
acc_change = gr.Textbox(
placeholder="[press enter to search]",
label="Accuracy Drop",
info="E.g., `2` means search for accuracy drop < 2%.",
show_label=True,
)
with gr.Row():
flops_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline FLOPs",
info="E.g., `100` means search for baseline FLOPs < 100M.",
show_label=True,
)
flops_box = gr.Textbox(
placeholder="[press enter to search]",
label="FLOPs After Pruning",
info="E.g., `100` means search for FLOPs after pruning < 100M.",
show_label=True,
)
flops_drop = gr.Textbox(
placeholder="[press enter to search]",
label="FLOPs Drop",
info="E.g., `50` means search for FLOPs drop > 50%.",
show_label=True,
)
with gr.Row():
param_base_box = gr.Textbox(
placeholder="[press enter to search]",
label="Baseline Parameters",
info="E.g., `10` means search for baseline parameters < 10M.",
show_label=True,
)
param_box = gr.Textbox(
placeholder="[press enter to search]",
label="Parameters after Pruning",
info="E.g., `10` means search for parameters after pruning < 10M.",
show_label=True,
)
param_drop = gr.Textbox(
placeholder="[press enter to search]",
label="Parameters Drop",
info="E.g., `50` means search for parameters drop by > 50%.",
show_label=True,
)
with gr.Accordion(label="See Model Baselines", open=False):
# text = gr.Text(value='Add baseline model specifications', label='Baseline FLOPs and Params', lines=2)
baseline_dataset = baseline[baseline['dataset'] == dataset]
baseline_no_dataset = baseline_dataset.drop(columns=['dataset'])
baseline_no_dataset = baseline_no_dataset.rename(columns=CUSTOM_HEADER_MAP)
baseline_df = gr.Dataframe(
value=baseline_no_dataset,
headers=list(baseline_no_dataset.columns),
interactive=False,
visible=True,
wrap=True,
)
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
sort_choice_box = gr.Radio(choices=[CUSTOM_HEADER_MAP["model"], CUSTOM_HEADER_MAP["sec"], CUSTOM_HEADER_MAP["year"]], value=CUSTOM_HEADER_MAP["model"], label="Draw with", info="Draw with [model, section, year]")
with gr.Column(scale=1):
x_axis_box = gr.Radio([CUSTOM_HEADER_MAP["flops-drop"], CUSTOM_HEADER_MAP["flops-pruned"]], value=CUSTOM_HEADER_MAP["flops-drop"], label="Set x-axis", info="Set x-axis to [FLOPs after pruning, FLOPs drop (%)]")
with gr.Column():
plot_acc_change = gr.Plot(label="Plot of Accuracy Change (%)")
y_axis_acc_change = gr.Text(value="acc-change", visible=False)
plot_acc = gr.Plot(label="Plot of Accuracy After Pruing")
y_axis_acc = gr.Text(value="acc-pruned", visible=False)
original_df = gr.Dataframe(
value=original_df_pd,
headers=list(df_dataset.columns),
max_rows=None,
interactive=False,
visible=False,
)
with gr.Row(): # table
df_dataset = df_dataset.rename(columns=CUSTOM_HEADER_MAP)
leaderboard_table = gr.Dataframe(
value=df_dataset,
headers=list(df_dataset.columns),
max_rows=None,
interactive=False,
visible=True,
)
with gr.Row():
details = gr.Markdown(value="*Click any **Method Name** in above table to see details...*", elem_classes='markdown-text')
bibtex_code = gr.Code("Click any Method Name in above table to see details...", label="BibTeX")
# app.load(new_plot, outputs=[plot_acc_change])
app.load(make_plot, inputs=[leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
app.load(make_plot, inputs=[leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
boxes = [search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop]
for search in boxes:
search.submit(update_table, [original_df, search_box, search_box_method, search_box_year, search_box_section, acc_base_box, acc_box, acc_change, flops_base_box, flops_box, flops_drop, param_base_box, param_box, param_drop], outputs=[leaderboard_table])
leaderboard_table.change(make_plot, inputs=[leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
leaderboard_table.change(make_plot, inputs=[leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
leaderboard_table.select(item_selected, inputs=[leaderboard_table], outputs=[details, bibtex_code])
sort_choice_box.change(make_plot, [leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
sort_choice_box.change(make_plot, [leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
x_axis_box.change(make_plot, [leaderboard_table, y_axis_acc, x_axis_box, sort_choice_box], outputs=[plot_acc])
x_axis_box.change(make_plot, [leaderboard_table, y_axis_acc_change, x_axis_box, sort_choice_box], outputs=[plot_acc_change])
def main():
global df
app = gr.Blocks(css=custom_css)
with app:
gr.Markdown(TITLE, elem_classes="markdown-title")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("👋 About", id=0):
gr.Markdown(INTRO, elem_classes="markdown-text")
gr.Code(BIBTEX, elem_classes="bibtex", label="BibTeX")
with gr.TabItem("📑 User Guide", id=1):
gr.Markdown("Guide to use this leaderboard", elem_classes="markdown-title")
with gr.Accordion(label="0. Sections", open=True):
gr.Markdown("## Sections", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
We divide the webpage into below sections:
1. Dataset Tabs
2. Query Section
3. Data Plotting
4. Data Table
More detailed functions are explained in the following sections.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="1. Dataset Tabs", open=False):
gr.Markdown("# Dataset Tabs", elem_classes="markdown-text")
with gr.Row():
gr.Image("src/images/cifar10-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/cifar100-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/imagenet-tab.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Row():
text = """
- Click the corresponding tabs to view the results of different datasets.
- We currently support three datasets: CIFAR-10, CIFAR-100, and ImageNet-1K.
- Results are 'isolated' for each dataset, i.e., the results of different datasets are not mixed together.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="2. Query Section", open=False):
gr.Markdown("## Query Section", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/query-overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
The query box includes two parts
- <span style="color:red">red</span> box: query by paper attributes
- <span style="color:blue">blue</span> box: query by experimental results
Press [Enter] key to update.
- update both plotting and table.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/use-case.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Example:
Here, we provide a use case and show how query works.
If a user wants to find methods that satisfy the followings:
1. Select Dataset: ImageNet-1K
2. Select Model: ResNet-50
3. Select Pruning Method: Regularization-based Pruning
4. Target 1: Accuracy after pruning > 75\%
5. Target 2: Pruned FLOPs > 40%
6. Target 3: Model size after pruning < 30M
By entering the requirements to the corresponding query box, we can narrow down the results and compare the remaining ones.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="3. Data Plotting", open=False):
gr.Markdown("## Data Plotting", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/plotting-overview.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
The data plotting section can be split into two parts:
- <span style="color:red">red</span> box: contains two radio buttons to select:
- (left) Group colors by ‘model’, ‘section’, or ‘year’.
- (right) Change x-axis of the plots to ‘FLOPs drop (%)’ or ‘FLOPs after pruning (M)’.
- <span style="color:blue">blue</span> box: interactive plots
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/group-model.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Model (default)
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/group-section.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Section
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/group-year.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Year
X-axis: FLOPs drop (%) (default)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/flops-pruned.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Group by Model (default)
X-axis: FLOPs after pruning (M)
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/default.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
Default Figure
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/drag.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
1. Shift the graph by dragging.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/zoom-out.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
2. Zoom-in/out by scrolling.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/hover.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
3. Hover over the data point to see the details.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/legend-before.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
4. Click any legend to filter out others.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Column():
gr.Image("src/images/legend-after.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
text = """
4. Click any legend to filter out others.
5. Click white spaces/Double Click to restore to default scaling and legends.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Accordion(label="4. Data Table", open=False):
gr.Markdown("## Data Table", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
with gr.Row():
gr.Image("src/images/drop-down-crop.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
gr.Image("src/images/expand.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click to the expand the table
- The expanded table contains the baseline FLOPs and Parameters for each model.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/sort_btn.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click the sort button:
- Sort in ascending order.
- click more than once to toggle ascending/descending.
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Row():
with gr.Column():
gr.Image("src/images/detail.png", elem_classes="markdown-image", show_label=False, interactive=False, show_download_button=False)
with gr.Column():
text = """
Click any method name (highlighted in the <span style="color:red">red</span> box) to show details of the paper (<span style="color:blue">blue</span> box).
The details include:
- detailed section
- link of paper
- venue of publication
- released code (if any)
- the BibTex used in our paper
"""
gr.Markdown(text, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
create_tab(app, "cifar10", 0, df)
create_tab(app, "cifar100", 1, df)
create_tab(app, "imagenet", 2, df)
app.launch()
if __name__ == "__main__":
main() |