Spaces:
Runtime error
Runtime error
File size: 15,918 Bytes
308c973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
from dataclasses import dataclass
from typing import Callable, Optional
import torch
from torch import nn
from diffusers.utils import BaseOutput
from diffusers.models.attention_processor import Attention
from diffusers.models.attention import FeedForward
from typing import Dict, Any
from cameractrl.models.attention_processor import PoseAdaptorAttnProcessor
from einops import rearrange
import math
class InflatedGroupNorm(nn.GroupNorm):
def forward(self, x):
# return super().forward(x)
video_length = x.shape[2]
x = rearrange(x, "b c f h w -> (b f) c h w")
x = super().forward(x)
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
return x
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
def get_motion_module(
in_channels,
motion_module_type: str,
motion_module_kwargs: dict
):
if motion_module_type == "Vanilla":
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs)
else:
raise ValueError
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=2,
attention_block_types=("Temporal_Self",),
temporal_position_encoding=True,
temporal_position_encoding_max_len=32,
temporal_attention_dim_div=1,
cross_attention_dim=320,
zero_initialize=True,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
causal_temporal_attention=False,
causal_temporal_attention_mask_type="",
rescale_output_factor=1.0
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_attention_dim=cross_attention_dim,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
encoder_hidden_states_query=encoder_hidden_states_query,
attention_activation_scale=attention_activation_scale,
attention_processor_kwargs=attention_processor_kwargs,
causal_temporal_attention=causal_temporal_attention,
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type,
rescale_output_factor=rescale_output_factor
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None,
cross_attention_kwargs: Dict[str, Any] = {}):
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask, cross_attention_kwargs=cross_attention_kwargs)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=("Temporal_Self", "Temporal_Self",),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=320,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
causal_temporal_attention=None,
causal_temporal_attention_mask_type="",
rescale_output_factor=1.0
):
super().__init__()
assert causal_temporal_attention is not None
self.causal_temporal_attention = causal_temporal_attention
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "")
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type
self.causal_temporal_attention_mask = None
inner_dim = num_attention_heads * attention_head_dim
self.norm = InflatedGroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
encoder_hidden_states_query=encoder_hidden_states_query,
attention_activation_scale=attention_activation_scale,
attention_processor_kwargs=attention_processor_kwargs,
rescale_output_factor=rescale_output_factor,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def get_causal_temporal_attention_mask(self, hidden_states):
batch_size, sequence_length, dim = hidden_states.shape
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != (
batch_size, sequence_length, sequence_length):
if self.causal_temporal_attention_mask_type == "causal":
# 1. vanilla causal mask
mask = torch.tril(torch.ones(sequence_length, sequence_length))
elif self.causal_temporal_attention_mask_type == "2-seq":
# 2. 2-seq
mask = torch.zeros(sequence_length, sequence_length)
mask[:sequence_length // 2, :sequence_length // 2] = 1
mask[-sequence_length // 2:, -sequence_length // 2:] = 1
elif self.causal_temporal_attention_mask_type == "0-prev":
# attn to the previous frame
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.zeros(sequence_length, sequence_length)
mask[:, 0] = 1.
mask[indices, indices_prev] = 1.
elif self.causal_temporal_attention_mask_type == "0":
# only attn to first frame
mask = torch.zeros(sequence_length, sequence_length)
mask[:, 0] = 1
elif self.causal_temporal_attention_mask_type == "wo-self":
indices = torch.arange(sequence_length)
mask = torch.ones(sequence_length, sequence_length)
mask[indices, indices] = 0
elif self.causal_temporal_attention_mask_type == "circle":
indices = torch.arange(sequence_length)
indices_prev = indices - 1
indices_prev[0] = 0
mask = torch.eye(sequence_length)
mask[indices, indices_prev] = 1
mask[0, -1] = 1
else:
raise ValueError
# generate attention mask fron binary values
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
mask = mask.unsqueeze(0)
mask = mask.repeat(batch_size, 1, 1)
self.causal_temporal_attention_mask = mask.to(hidden_states.device)
return self.causal_temporal_attention_mask
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None,
cross_attention_kwargs: Dict[str, Any] = {},):
residual = hidden_states
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
height, width = hidden_states.shape[-2:]
hidden_states = self.norm(hidden_states)
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c")
hidden_states = self.proj_in(hidden_states)
attention_mask = self.get_causal_temporal_attention_mask(
hidden_states) if self.causal_temporal_attention else attention_mask
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs)
hidden_states = self.proj_out(hidden_states)
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width)
output = hidden_states + residual
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=("Temporal_Self", "Temporal_Self",),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
encoder_hidden_states_query=(False, False),
attention_activation_scale=1.0,
attention_processor_kwargs: Dict = {},
rescale_output_factor=1.0
):
super().__init__()
attention_blocks = []
norms = []
self.attention_block_types = attention_block_types
for block_idx, block_name in enumerate(attention_block_types):
attention_blocks.append(
TemporalSelfAttention(
attention_mode=block_name,
cross_attention_dim=cross_attention_dim if block_name in ['Temporal_Cross', 'Temporal_Pose_Adaptor'] else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
rescale_output_factor=rescale_output_factor,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs: Dict[str, Any] = {}):
for attention_block, norm, attention_block_type in zip(self.attention_blocks, self.norms, self.attention_block_types):
norm_hidden_states = norm(hidden_states)
hidden_states = attention_block(
norm_hidden_states,
encoder_hidden_states=norm_hidden_states if attention_block_type == 'Temporal_Self' else encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs
) + hidden_states
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout=0.,
max_len=32,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class TemporalSelfAttention(Attention):
def __init__(
self,
attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
rescale_output_factor=1.0,
*args, **kwargs
):
super().__init__(*args, **kwargs)
assert attention_mode == "Temporal_Self"
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"],
max_len=temporal_position_encoding_max_len
) if temporal_position_encoding else None
self.rescale_output_factor = rescale_output_factor
def set_use_memory_efficient_attention_xformers(
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
):
# disable motion module efficient xformers to avoid bad results, don't know why
# TODO: fix this bug
pass
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
# add position encoding
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
if "pose_feature" in cross_attention_kwargs:
pose_feature = cross_attention_kwargs["pose_feature"]
if pose_feature.ndim == 5:
pose_feature = rearrange(pose_feature, "b c f h w -> (b h w) f c")
else:
assert pose_feature.ndim == 3
cross_attention_kwargs["pose_feature"] = pose_feature
if isinstance(self.processor, PoseAdaptorAttnProcessor):
return self.processor(
self,
hidden_states,
cross_attention_kwargs.pop('pose_feature'),
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
elif hasattr(self.processor, "__call__"):
return self.processor.__call__(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
else:
return self.processor(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
|