Spaces:
Runtime error
Runtime error
File size: 9,535 Bytes
308c973 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import math
import torch
import torch.nn as nn
from einops import rearrange
from typing import List, Tuple
from cameractrl.models.motion_module import TemporalTransformerBlock
def get_parameter_dtype(parameter: torch.nn.Module):
try:
params = tuple(parameter.parameters())
if len(params) > 0:
return params[0].dtype
buffers = tuple(parameter.buffers())
if len(buffers) > 0:
return buffers[0].dtype
except StopIteration:
# For torch.nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, torch.Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class PoseAdaptor(nn.Module):
def __init__(self, unet, pose_encoder):
super().__init__()
self.unet = unet
self.pose_encoder = pose_encoder
def forward(self, noisy_latents, c_noise, encoder_hidden_states, added_time_ids, pose_embedding):
assert pose_embedding.ndim == 5
pose_embedding_features = self.pose_encoder(pose_embedding) # b c f h w
noise_pred = self.unet(noisy_latents,
c_noise,
encoder_hidden_states,
added_time_ids=added_time_ids,
pose_features=pose_embedding_features).sample
return noise_pred
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk == False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class PositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout=0.,
max_len=32,
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2, ...] = torch.sin(position * div_term)
pe[0, :, 1::2, ...] = torch.cos(position * div_term)
pe.unsqueeze_(-1).unsqueeze_(-1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1), ...]
return self.dropout(x)
class CameraPoseEncoder(nn.Module):
def __init__(self,
downscale_factor,
channels=[320, 640, 1280, 1280],
nums_rb=3,
cin=64,
ksize=3,
sk=False,
use_conv=True,
compression_factor=1,
temporal_attention_nhead=8,
attention_block_types=("Temporal_Self", ),
temporal_position_encoding=False,
temporal_position_encoding_max_len=16,
rescale_output_factor=1.0):
super(CameraPoseEncoder, self).__init__()
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
self.channels = channels
self.nums_rb = nums_rb
self.encoder_down_conv_blocks = nn.ModuleList()
self.encoder_down_attention_blocks = nn.ModuleList()
for i in range(len(channels)):
conv_layers = nn.ModuleList()
temporal_attention_layers = nn.ModuleList()
for j in range(nums_rb):
if j == 0 and i != 0:
in_dim = channels[i - 1]
out_dim = int(channels[i] / compression_factor)
conv_layer = ResnetBlock(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv)
elif j == 0:
in_dim = channels[0]
out_dim = int(channels[i] / compression_factor)
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
elif j == nums_rb - 1:
in_dim = channels[i] / compression_factor
out_dim = channels[i]
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
else:
in_dim = int(channels[i] / compression_factor)
out_dim = int(channels[i] / compression_factor)
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv)
temporal_attention_layer = TemporalTransformerBlock(dim=out_dim,
num_attention_heads=temporal_attention_nhead,
attention_head_dim=int(out_dim / temporal_attention_nhead),
attention_block_types=attention_block_types,
dropout=0.0,
cross_attention_dim=None,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
rescale_output_factor=rescale_output_factor)
conv_layers.append(conv_layer)
temporal_attention_layers.append(temporal_attention_layer)
self.encoder_down_conv_blocks.append(conv_layers)
self.encoder_down_attention_blocks.append(temporal_attention_layers)
self.encoder_conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
@property
def dtype(self) -> torch.dtype:
"""
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
return get_parameter_dtype(self)
def forward(self, x):
# unshuffle
bs = x.shape[0]
x = rearrange(x, "b f c h w -> (b f) c h w")
x = self.unshuffle(x)
# extract features
features = []
x = self.encoder_conv_in(x)
for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks):
for res_layer, attention_layer in zip(res_block, attention_block):
x = res_layer(x)
h, w = x.shape[-2:]
x = rearrange(x, '(b f) c h w -> (b h w) f c', b=bs)
x = attention_layer(x)
x = rearrange(x, '(b h w) f c -> (b f) c h w', h=h, w=w)
features.append(rearrange(x, '(b f) c h w -> b c f h w', b=bs))
return features
|