File size: 16,058 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import os
import sys
from PIL import Image
from typing import NamedTuple
from scene.colmap_loader import (
    read_extrinsics_text,
    read_intrinsics_text,
    qvec2rotmat,
    read_extrinsics_binary,
    read_intrinsics_binary,
    read_points3D_binary,
    read_points3D_text,
)
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal
from utils.camera_utils import get_uniform_poses
import numpy as np
import json
from pathlib import Path
from plyfile import PlyData, PlyElement
from utils.sh_utils import SH2RGB
from scene.gaussian_model import BasicPointCloud
from scene.cameras import Camera
import torch
import rembg
import mcubes
import trimesh


class CameraInfo(NamedTuple):
    uid: int
    R: np.array
    T: np.array
    FovY: np.array
    FovX: np.array
    image: np.array
    image_path: str
    image_name: str
    width: int
    height: int


class SceneInfo(NamedTuple):
    point_cloud: BasicPointCloud
    train_cameras: list
    test_cameras: list
    nerf_normalization: dict
    ply_path: str


def getNerfppNorm(cam_info):
    def get_center_and_diag(cam_centers):
        cam_centers = np.hstack(cam_centers)
        avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
        center = avg_cam_center
        dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
        diagonal = np.max(dist)
        return center.flatten(), diagonal

    cam_centers = []

    for cam in cam_info:
        W2C = getWorld2View2(cam.R, cam.T)
        C2W = np.linalg.inv(W2C)
        cam_centers.append(C2W[:3, 3:4])

    center, diagonal = get_center_and_diag(cam_centers)
    radius = diagonal * 1.1

    translate = -center

    return {"translate": translate, "radius": radius}


def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
    cam_infos = []
    for idx, key in enumerate(cam_extrinsics):
        sys.stdout.write("\r")
        # the exact output you're looking for:
        sys.stdout.write("Reading camera {}/{}".format(idx + 1, len(cam_extrinsics)))
        sys.stdout.flush()

        extr = cam_extrinsics[key]
        intr = cam_intrinsics[extr.camera_id]
        height = intr.height
        width = intr.width

        uid = intr.id
        R = np.transpose(qvec2rotmat(extr.qvec))
        T = np.array(extr.tvec)

        if intr.model == "SIMPLE_PINHOLE":
            focal_length_x = intr.params[0]
            FovY = focal2fov(focal_length_x, height)
            FovX = focal2fov(focal_length_x, width)
        elif intr.model == "PINHOLE":
            focal_length_x = intr.params[0]
            focal_length_y = intr.params[1]
            FovY = focal2fov(focal_length_y, height)
            FovX = focal2fov(focal_length_x, width)
        else:
            assert (
                False
            ), "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"

        image_path = os.path.join(images_folder, os.path.basename(extr.name))
        image_name = os.path.basename(image_path).split(".")[0]
        image = Image.open(image_path)

        cam_info = CameraInfo(
            uid=uid,
            R=R,
            T=T,
            FovY=FovY,
            FovX=FovX,
            image=image,
            image_path=image_path,
            image_name=image_name,
            width=width,
            height=height,
        )
        cam_infos.append(cam_info)
    sys.stdout.write("\n")
    return cam_infos


def fetchPly(path):
    plydata = PlyData.read(path)
    vertices = plydata["vertex"]
    positions = np.vstack([vertices["x"], vertices["y"], vertices["z"]]).T
    colors = np.vstack([vertices["red"], vertices["green"], vertices["blue"]]).T / 255.0
    normals = np.vstack([vertices["nx"], vertices["ny"], vertices["nz"]]).T
    return BasicPointCloud(points=positions, colors=colors, normals=normals)


def storePly(path, xyz, rgb):
    # Define the dtype for the structured array
    dtype = [
        ("x", "f4"),
        ("y", "f4"),
        ("z", "f4"),
        ("nx", "f4"),
        ("ny", "f4"),
        ("nz", "f4"),
        ("red", "u1"),
        ("green", "u1"),
        ("blue", "u1"),
    ]

    normals = np.zeros_like(xyz)

    elements = np.empty(xyz.shape[0], dtype=dtype)
    attributes = np.concatenate((xyz, normals, rgb), axis=1)
    elements[:] = list(map(tuple, attributes))

    # Create the PlyData object and write to file
    vertex_element = PlyElement.describe(elements, "vertex")
    ply_data = PlyData([vertex_element])
    ply_data.write(path)


def readColmapSceneInfo(path, images, eval, llffhold=8):
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

    reading_dir = "images" if images == None else images
    cam_infos_unsorted = readColmapCameras(
        cam_extrinsics=cam_extrinsics,
        cam_intrinsics=cam_intrinsics,
        images_folder=os.path.join(path, reading_dir),
    )
    cam_infos = sorted(cam_infos_unsorted.copy(), key=lambda x: x.image_name)

    if eval:
        train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
        test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
    else:
        train_cam_infos = cam_infos
        test_cam_infos = []

    nerf_normalization = getNerfppNorm(train_cam_infos)

    ply_path = os.path.join(path, "sparse/0/points3D.ply")
    bin_path = os.path.join(path, "sparse/0/points3D.bin")
    txt_path = os.path.join(path, "sparse/0/points3D.txt")
    if not os.path.exists(ply_path):
        print(
            "Converting point3d.bin to .ply, will happen only the first time you open the scene."
        )
        try:
            xyz, rgb, _ = read_points3D_binary(bin_path)
        except:
            xyz, rgb, _ = read_points3D_text(txt_path)
        storePly(ply_path, xyz, rgb)
    try:
        pcd = fetchPly(ply_path)
    except:
        pcd = None

    scene_info = SceneInfo(
        point_cloud=pcd,
        train_cameras=train_cam_infos,
        test_cameras=test_cam_infos,
        nerf_normalization=nerf_normalization,
        ply_path=ply_path,
    )
    return scene_info


def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
    cam_infos = []

    with open(os.path.join(path, transformsfile)) as json_file:
        contents = json.load(json_file)
        fovx = contents["camera_angle_x"]

        frames = contents["frames"]
        for idx, frame in enumerate(frames):
            cam_name = os.path.join(path, frame["file_path"] + extension)

            # NeRF 'transform_matrix' is a camera-to-world transform
            c2w = np.array(frame["transform_matrix"])
            # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
            c2w[:3, 1:3] *= -1

            # get the world-to-camera transform and set R, T
            w2c = np.linalg.inv(c2w)
            R = np.transpose(
                w2c[:3, :3]
            )  # R is stored transposed due to 'glm' in CUDA code
            T = w2c[:3, 3]

            image_path = os.path.join(path, cam_name)
            image_name = Path(cam_name).stem
            image = Image.open(image_path)

            im_data = np.array(image.convert("RGBA"))

            bg = np.array([1, 1, 1]) if white_background else np.array([0, 0, 0])

            norm_data = im_data / 255.0
            if norm_data.shape[-1] != 3:
                arr = norm_data[:, :, :3] * norm_data[:, :, 3:4] + bg * (
                    1 - norm_data[:, :, 3:4]
                )
            image = Image.fromarray(np.array(arr * 255.0, dtype=np.byte), "RGB")

            fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
            FovY = fovy
            FovX = fovx

            cam_infos.append(
                CameraInfo(
                    uid=idx,
                    R=R,
                    T=T,
                    FovY=FovY,
                    FovX=FovX,
                    image=image,
                    image_path=image_path,
                    image_name=image_name,
                    width=image.size[0],
                    height=image.size[1],
                )
            )

    return cam_infos


def uniform_surface_sampling_from_vertices_and_faces(
    vertices, faces, num_points: int
) -> torch.Tensor:
    """
    Uniformly sample points from the surface of a mesh.

    Args:
        vertices (torch.Tensor): Vertices of the mesh.
        faces (torch.Tensor): Faces of the mesh.
        num_points (int): Number of points to sample.

    Returns:
        torch.Tensor: Points sampled from the surface of the mesh.
    """
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
    n = num_points
    points = []
    while n > 0:
        p, _ = trimesh.sample.sample_surface_even(mesh, n)
        n -= p.shape[0]
        if n >= 0:
            points.append(p)
        else:
            points.append(p[:n])

    if len(points) > 1:
        points = np.concatenate(points, axis=0)
    else:
        points = points[0]

    points = torch.from_numpy(points.astype(np.float32))

    return points, torch.rand_like(points)


def occ_from_sparse_initialize(poses, images, cameras, grid_reso, num_points):
    # fov is in degrees
    this_session = rembg.new_session()

    imgs = [rembg.remove(im, session=this_session) for im in images]

    reso = grid_reso
    occ_grid = torch.ones((reso, reso, reso), dtype=torch.bool, device="cuda")

    c2ws = poses
    center = c2ws[..., :3, 3].mean(axis=0)
    radius = np.linalg.norm(c2ws[..., :3, 3] - center, axis=-1).mean()
    xx, yy, zz = torch.meshgrid(
        torch.linspace(-radius, radius, reso, device="cuda"),
        torch.linspace(-radius, radius, reso, device="cuda"),
        torch.linspace(-radius, radius, reso, device="cuda"),
        indexing="ij",
    )
    print("radius", radius)

    # xyz_grid = torch.stack((xx.flatten(), yy.flatten(), zz.flatten()), dim=-1)
    ww = torch.ones((reso, reso, reso), dtype=torch.float32, device="cuda")
    xyzw_grid = torch.stack((xx, yy, zz, ww), dim=-1)
    xyzw_grid[..., :3] += torch.from_numpy(center).cuda()

    c2ws = torch.tensor(c2ws, dtype=torch.float32)

    for c2w, camera, img in zip(c2ws, cameras, imgs):
        img = np.asarray(img)
        alpha = img[..., 3].astype(np.float32) / 255.0
        is_foreground = alpha > 0.05
        is_foreground = torch.from_numpy(is_foreground).cuda()

        full_proj_mtx = Camera(
            colmap_id=camera.uid,
            R=camera.R,
            T=camera.T,
            FoVx=camera.FovX,
            FoVy=camera.FovY,
            image=torch.randn(3, 10, 10),
            gt_alpha_mask=None,
            image_name="no",
            uid=0,
            data_device="cuda",
        ).full_proj_transform
        # check the scale

        ij = xyzw_grid @ full_proj_mtx
        ij = (ij + 1) / 2.0
        h, w = img.shape[:2]
        ij = ij[..., :2] * torch.tensor([w, h], dtype=torch.float32, device="cuda")
        ij = (
            ij.clamp(
                min=torch.tensor([0.0, 0.0], device="cuda"),
                max=torch.tensor([w - 1, h - 1], dtype=torch.float32, device="cuda"),
            )
            .to(torch.long)
            .cuda()
        )

        occ_grid = torch.logical_and(occ_grid, is_foreground[ij[..., 1], ij[..., 0]])

    # To mesh
    occ_grid = occ_grid.to(torch.float32).cpu().numpy()
    vertices, triangles = mcubes.marching_cubes(occ_grid, 0.5)

    # vertices = (vertices / reso - 0.5) * radius * 2 + center
    # vertices = (vertices / (reso - 1.0) - 0.5) * radius * 2 * 2 + center
    vertices = vertices / (grid_reso - 1) * 2 - 1
    vertices = vertices * radius + center
    # mcubes.export_obj(vertices, triangles, "./tmp/occ_voxel.obj")

    xyz, rgb = uniform_surface_sampling_from_vertices_and_faces(
        vertices, triangles, num_points
    )

    return xyz


def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
    print("Reading Training Transforms")
    train_cam_infos = readCamerasFromTransforms(
        path, "transforms_train.json", white_background, extension
    )
    print("Reading Test Transforms")
    test_cam_infos = readCamerasFromTransforms(
        path, "transforms_test.json", white_background, extension
    )

    if not eval:
        train_cam_infos.extend(test_cam_infos)
        test_cam_infos = []

    nerf_normalization = getNerfppNorm(train_cam_infos)

    ply_path = os.path.join(path, "points3d.ply")
    if not os.path.exists(ply_path):
        # Since this data set has no colmap data, we start with random points
        num_pts = 100_000
        print(f"Generating random point cloud ({num_pts})...")

        # We create random points inside the bounds of the synthetic Blender scenes
        xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
        shs = np.random.random((num_pts, 3)) / 255.0
        pcd = BasicPointCloud(
            points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
        )

        storePly(ply_path, xyz, SH2RGB(shs) * 255)
    try:
        pcd = fetchPly(ply_path)
    except:
        pcd = None

    scene_info = SceneInfo(
        point_cloud=pcd,
        train_cameras=train_cam_infos,
        test_cameras=test_cam_infos,
        nerf_normalization=nerf_normalization,
        ply_path=ply_path,
    )
    return scene_info


def constructVideoNVSInfo(
    num_frames,
    radius,
    elevation,
    fov,
    reso,
    images,
    masks,
    num_pts=100_000,
    train=True,
):
    poses = get_uniform_poses(num_frames, radius, elevation)
    w2cs = np.linalg.inv(poses)
    train_cam_infos = []

    for idx, pose in enumerate(w2cs):
        train_cam_infos.append(
            CameraInfo(
                uid=idx,
                R=np.transpose(pose[:3, :3]),
                T=pose[:3, 3],
                FovY=np.deg2rad(fov),
                FovX=np.deg2rad(fov),
                image=images[idx],
                image_path=None,
                image_name=idx,
                width=reso,
                height=reso,
            )
        )

    nerf_normalization = getNerfppNorm(train_cam_infos)
    # xyz = np.random.random((num_pts, 3)) * radius / 3 - radius / 3
    xyz = np.random.randn(num_pts, 3) * radius / 16
    # if len(poses) <= 24:
    #     xyz = occ_from_sparse_initialize(poses, images, train_cam_infos, 256, num_pts)
    #     num_pts = xyz.shape[0]
    # else:
    #     xyz = np.random.randn(num_pts, 3) * radius / 16
    xyz = np.random.randn(num_pts, 3) * radius / 16
    # shs = np.random.random((num_pts, 3)) / 255.0
    shs = np.ones((num_pts, 3)) * 0.2
    pcd = BasicPointCloud(
        points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))
    )

    ply_path = "./tmp/points3d.ply"
    storePly(ply_path, xyz, SH2RGB(shs) * 255)
    pcd = fetchPly(ply_path)

    scene_info = SceneInfo(
        point_cloud=pcd,
        train_cameras=train_cam_infos,
        test_cameras=[],
        nerf_normalization=nerf_normalization,
        ply_path="./tmp/points3d.ply",
    )

    return scene_info


sceneLoadTypeCallbacks = {
    "Colmap": readColmapSceneInfo,
    "Blender": readNerfSyntheticInfo,
    "VideoNVS": constructVideoNVSInfo,
}