Spaces:
Runtime error
Runtime error
File size: 14,687 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import os
import math
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF
import pytorch_lightning as pl
import datasets
from datasets.colmap_utils import \
read_cameras_binary, read_images_binary, read_points3d_binary
from models.ray_utils import get_ray_directions
from utils.misc import get_rank
def get_center(pts):
center = pts.mean(0)
dis = (pts - center[None,:]).norm(p=2, dim=-1)
mean, std = dis.mean(), dis.std()
q25, q75 = torch.quantile(dis, 0.25), torch.quantile(dis, 0.75)
valid = (dis > mean - 1.5 * std) & (dis < mean + 1.5 * std) & (dis > mean - (q75 - q25) * 1.5) & (dis < mean + (q75 - q25) * 1.5)
center = pts[valid].mean(0)
return center
def normalize_poses(poses, pts, up_est_method, center_est_method):
if center_est_method == 'camera':
# estimation scene center as the average of all camera positions
center = poses[...,3].mean(0)
elif center_est_method == 'lookat':
# estimation scene center as the average of the intersection of selected pairs of camera rays
cams_ori = poses[...,3]
cams_dir = poses[:,:3,:3] @ torch.as_tensor([0.,0.,-1.])
cams_dir = F.normalize(cams_dir, dim=-1)
A = torch.stack([cams_dir, -cams_dir.roll(1,0)], dim=-1)
b = -cams_ori + cams_ori.roll(1,0)
t = torch.linalg.lstsq(A, b).solution
center = (torch.stack([cams_dir, cams_dir.roll(1,0)], dim=-1) * t[:,None,:] + torch.stack([cams_ori, cams_ori.roll(1,0)], dim=-1)).mean((0,2))
elif center_est_method == 'point':
# first estimation scene center as the average of all camera positions
# later we'll use the center of all points bounded by the cameras as the final scene center
center = poses[...,3].mean(0)
else:
raise NotImplementedError(f'Unknown center estimation method: {center_est_method}')
if up_est_method == 'ground':
# estimate up direction as the normal of the estimated ground plane
# use RANSAC to estimate the ground plane in the point cloud
import pyransac3d as pyrsc
ground = pyrsc.Plane()
plane_eq, inliers = ground.fit(pts.numpy(), thresh=0.01) # TODO: determine thresh based on scene scale
plane_eq = torch.as_tensor(plane_eq) # A, B, C, D in Ax + By + Cz + D = 0
z = F.normalize(plane_eq[:3], dim=-1) # plane normal as up direction
signed_distance = (torch.cat([pts, torch.ones_like(pts[...,0:1])], dim=-1) * plane_eq).sum(-1)
if signed_distance.mean() < 0:
z = -z # flip the direction if points lie under the plane
elif up_est_method == 'camera':
# estimate up direction as the average of all camera up directions
z = F.normalize((poses[...,3] - center).mean(0), dim=0)
else:
raise NotImplementedError(f'Unknown up estimation method: {up_est_method}')
# new axis
y_ = torch.as_tensor([z[1], -z[0], 0.])
x = F.normalize(y_.cross(z), dim=0)
y = z.cross(x)
if center_est_method == 'point':
# rotation
Rc = torch.stack([x, y, z], dim=1)
R = Rc.T
poses_homo = torch.cat([poses, torch.as_tensor([[[0.,0.,0.,1.]]]).expand(poses.shape[0], -1, -1)], dim=1)
inv_trans = torch.cat([torch.cat([R, torch.as_tensor([[0.,0.,0.]]).T], dim=1), torch.as_tensor([[0.,0.,0.,1.]])], dim=0)
poses_norm = (inv_trans @ poses_homo)[:,:3]
pts = (inv_trans @ torch.cat([pts, torch.ones_like(pts[:,0:1])], dim=-1)[...,None])[:,:3,0]
# translation and scaling
poses_min, poses_max = poses_norm[...,3].min(0)[0], poses_norm[...,3].max(0)[0]
pts_fg = pts[(poses_min[0] < pts[:,0]) & (pts[:,0] < poses_max[0]) & (poses_min[1] < pts[:,1]) & (pts[:,1] < poses_max[1])]
center = get_center(pts_fg)
tc = center.reshape(3, 1)
t = -tc
poses_homo = torch.cat([poses_norm, torch.as_tensor([[[0.,0.,0.,1.]]]).expand(poses_norm.shape[0], -1, -1)], dim=1)
inv_trans = torch.cat([torch.cat([torch.eye(3), t], dim=1), torch.as_tensor([[0.,0.,0.,1.]])], dim=0)
poses_norm = (inv_trans @ poses_homo)[:,:3]
scale = poses_norm[...,3].norm(p=2, dim=-1).min()
poses_norm[...,3] /= scale
pts = (inv_trans @ torch.cat([pts, torch.ones_like(pts[:,0:1])], dim=-1)[...,None])[:,:3,0]
pts = pts / scale
else:
# rotation and translation
Rc = torch.stack([x, y, z], dim=1)
tc = center.reshape(3, 1)
R, t = Rc.T, -Rc.T @ tc
poses_homo = torch.cat([poses, torch.as_tensor([[[0.,0.,0.,1.]]]).expand(poses.shape[0], -1, -1)], dim=1)
inv_trans = torch.cat([torch.cat([R, t], dim=1), torch.as_tensor([[0.,0.,0.,1.]])], dim=0)
poses_norm = (inv_trans @ poses_homo)[:,:3] # (N_images, 4, 4)
# scaling
scale = poses_norm[...,3].norm(p=2, dim=-1).min()
poses_norm[...,3] /= scale
# apply the transformation to the point cloud
pts = (inv_trans @ torch.cat([pts, torch.ones_like(pts[:,0:1])], dim=-1)[...,None])[:,:3,0]
pts = pts / scale
return poses_norm, pts
def create_spheric_poses(cameras, n_steps=120):
center = torch.as_tensor([0.,0.,0.], dtype=cameras.dtype, device=cameras.device)
mean_d = (cameras - center[None,:]).norm(p=2, dim=-1).mean()
mean_h = cameras[:,2].mean()
r = (mean_d**2 - mean_h**2).sqrt()
up = torch.as_tensor([0., 0., 1.], dtype=center.dtype, device=center.device)
all_c2w = []
for theta in torch.linspace(0, 2 * math.pi, n_steps):
cam_pos = torch.stack([r * theta.cos(), r * theta.sin(), mean_h])
l = F.normalize(center - cam_pos, p=2, dim=0)
s = F.normalize(l.cross(up), p=2, dim=0)
u = F.normalize(s.cross(l), p=2, dim=0)
c2w = torch.cat([torch.stack([s, u, -l], dim=1), cam_pos[:,None]], axis=1)
all_c2w.append(c2w)
all_c2w = torch.stack(all_c2w, dim=0)
return all_c2w
class ColmapDatasetBase():
# the data only has to be processed once
initialized = False
properties = {}
def setup(self, config, split):
self.config = config
self.split = split
self.rank = get_rank()
if not ColmapDatasetBase.initialized:
camdata = read_cameras_binary(os.path.join(self.config.root_dir, 'sparse/0/cameras.bin'))
H = int(camdata[1].height)
W = int(camdata[1].width)
if 'img_wh' in self.config:
w, h = self.config.img_wh
assert round(W / w * h) == H
elif 'img_downscale' in self.config:
w, h = int(W / self.config.img_downscale + 0.5), int(H / self.config.img_downscale + 0.5)
else:
raise KeyError("Either img_wh or img_downscale should be specified.")
img_wh = (w, h)
factor = w / W
if camdata[1].model == 'SIMPLE_RADIAL':
fx = fy = camdata[1].params[0] * factor
cx = camdata[1].params[1] * factor
cy = camdata[1].params[2] * factor
elif camdata[1].model in ['PINHOLE', 'OPENCV']:
fx = camdata[1].params[0] * factor
fy = camdata[1].params[1] * factor
cx = camdata[1].params[2] * factor
cy = camdata[1].params[3] * factor
else:
raise ValueError(f"Please parse the intrinsics for camera model {camdata[1].model}!")
directions = get_ray_directions(w, h, fx, fy, cx, cy).to(self.rank)
imdata = read_images_binary(os.path.join(self.config.root_dir, 'sparse/0/images.bin'))
mask_dir = os.path.join(self.config.root_dir, 'masks')
has_mask = os.path.exists(mask_dir) # TODO: support partial masks
apply_mask = has_mask and self.config.apply_mask
all_c2w, all_images, all_fg_masks = [], [], []
for i, d in enumerate(imdata.values()):
R = d.qvec2rotmat()
t = d.tvec.reshape(3, 1)
c2w = torch.from_numpy(np.concatenate([R.T, -R.T@t], axis=1)).float()
c2w[:,1:3] *= -1. # COLMAP => OpenGL
all_c2w.append(c2w)
if self.split in ['train', 'val']:
img_path = os.path.join(self.config.root_dir, 'images', d.name)
img = Image.open(img_path)
img = img.resize(img_wh, Image.BICUBIC)
img = TF.to_tensor(img).permute(1, 2, 0)[...,:3]
img = img.to(self.rank) if self.config.load_data_on_gpu else img.cpu()
if has_mask:
mask_paths = [os.path.join(mask_dir, d.name), os.path.join(mask_dir, d.name[3:])]
mask_paths = list(filter(os.path.exists, mask_paths))
assert len(mask_paths) == 1
mask = Image.open(mask_paths[0]).convert('L') # (H, W, 1)
mask = mask.resize(img_wh, Image.BICUBIC)
mask = TF.to_tensor(mask)[0]
else:
mask = torch.ones_like(img[...,0], device=img.device)
all_fg_masks.append(mask) # (h, w)
all_images.append(img)
all_c2w = torch.stack(all_c2w, dim=0)
pts3d = read_points3d_binary(os.path.join(self.config.root_dir, 'sparse/0/points3D.bin'))
pts3d = torch.from_numpy(np.array([pts3d[k].xyz for k in pts3d])).float()
all_c2w, pts3d = normalize_poses(all_c2w, pts3d, up_est_method=self.config.up_est_method, center_est_method=self.config.center_est_method)
ColmapDatasetBase.properties = {
'w': w,
'h': h,
'img_wh': img_wh,
'factor': factor,
'has_mask': has_mask,
'apply_mask': apply_mask,
'directions': directions,
'pts3d': pts3d,
'all_c2w': all_c2w,
'all_images': all_images,
'all_fg_masks': all_fg_masks
}
ColmapDatasetBase.initialized = True
for k, v in ColmapDatasetBase.properties.items():
setattr(self, k, v)
if self.split == 'test':
self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.config.n_test_traj_steps)
self.all_images = torch.zeros((self.config.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32)
self.all_fg_masks = torch.zeros((self.config.n_test_traj_steps, self.h, self.w), dtype=torch.float32)
else:
self.all_images, self.all_fg_masks = torch.stack(self.all_images, dim=0).float(), torch.stack(self.all_fg_masks, dim=0).float()
"""
# for debug use
from models.ray_utils import get_rays
rays_o, rays_d = get_rays(self.directions.cpu(), self.all_c2w, keepdim=True)
pts_out = []
pts_out.append('\n'.join([' '.join([str(p) for p in l]) + ' 1.0 0.0 0.0' for l in rays_o[:,0,0].reshape(-1, 3).tolist()]))
t_vals = torch.linspace(0, 1, 8)
z_vals = 0.05 * (1 - t_vals) + 0.5 * t_vals
ray_pts = (rays_o[:,0,0][..., None, :] + z_vals[..., None] * rays_d[:,0,0][..., None, :])
pts_out.append('\n'.join([' '.join([str(p) for p in l]) + ' 0.0 1.0 0.0' for l in ray_pts.view(-1, 3).tolist()]))
ray_pts = (rays_o[:,0,0][..., None, :] + z_vals[..., None] * rays_d[:,self.h-1,0][..., None, :])
pts_out.append('\n'.join([' '.join([str(p) for p in l]) + ' 0.0 0.0 1.0' for l in ray_pts.view(-1, 3).tolist()]))
ray_pts = (rays_o[:,0,0][..., None, :] + z_vals[..., None] * rays_d[:,0,self.w-1][..., None, :])
pts_out.append('\n'.join([' '.join([str(p) for p in l]) + ' 0.0 1.0 1.0' for l in ray_pts.view(-1, 3).tolist()]))
ray_pts = (rays_o[:,0,0][..., None, :] + z_vals[..., None] * rays_d[:,self.h-1,self.w-1][..., None, :])
pts_out.append('\n'.join([' '.join([str(p) for p in l]) + ' 1.0 1.0 1.0' for l in ray_pts.view(-1, 3).tolist()]))
open('cameras.txt', 'w').write('\n'.join(pts_out))
open('scene.txt', 'w').write('\n'.join([' '.join([str(p) for p in l]) + ' 0.0 0.0 0.0' for l in self.pts3d.view(-1, 3).tolist()]))
exit(1)
"""
self.all_c2w = self.all_c2w.float().to(self.rank)
if self.config.load_data_on_gpu:
self.all_images = self.all_images.to(self.rank)
self.all_fg_masks = self.all_fg_masks.to(self.rank)
class ColmapDataset(Dataset, ColmapDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __len__(self):
return len(self.all_images)
def __getitem__(self, index):
return {
'index': index
}
class ColmapIterableDataset(IterableDataset, ColmapDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __iter__(self):
while True:
yield {}
@datasets.register('colmap')
class ColmapDataModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
def setup(self, stage=None):
if stage in [None, 'fit']:
self.train_dataset = ColmapIterableDataset(self.config, 'train')
if stage in [None, 'fit', 'validate']:
self.val_dataset = ColmapDataset(self.config, self.config.get('val_split', 'train'))
if stage in [None, 'test']:
self.test_dataset = ColmapDataset(self.config, self.config.get('test_split', 'test'))
if stage in [None, 'predict']:
self.predict_dataset = ColmapDataset(self.config, 'train')
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size):
sampler = None
return DataLoader(
dataset,
num_workers=os.cpu_count(),
batch_size=batch_size,
pin_memory=True,
sampler=sampler
)
def train_dataloader(self):
return self.general_loader(self.train_dataset, batch_size=1)
def val_dataloader(self):
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self):
return self.general_loader(self.predict_dataset, batch_size=1)
|