Spaces:
Runtime error
Runtime error
File size: 7,311 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import json
import math
import numpy as np
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF
import pytorch_lightning as pl
import datasets
from models.ray_utils import get_ray_directions
from utils.misc import get_rank
def load_K_Rt_from_P(P=None):
out = cv2.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose()
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose
def create_spheric_poses(cameras, n_steps=120):
center = torch.as_tensor([0.,0.,0.], dtype=cameras.dtype, device=cameras.device)
cam_center = F.normalize(cameras.mean(0), p=2, dim=-1) * cameras.mean(0).norm(2)
eigvecs = torch.linalg.eig(cameras.T @ cameras).eigenvectors
rot_axis = F.normalize(eigvecs[:,1].real.float(), p=2, dim=-1)
up = rot_axis
rot_dir = torch.cross(rot_axis, cam_center)
max_angle = (F.normalize(cameras, p=2, dim=-1) * F.normalize(cam_center, p=2, dim=-1)).sum(-1).acos().max()
all_c2w = []
for theta in torch.linspace(-max_angle, max_angle, n_steps):
cam_pos = cam_center * math.cos(theta) + rot_dir * math.sin(theta)
l = F.normalize(center - cam_pos, p=2, dim=0)
s = F.normalize(l.cross(up), p=2, dim=0)
u = F.normalize(s.cross(l), p=2, dim=0)
c2w = torch.cat([torch.stack([s, u, -l], dim=1), cam_pos[:,None]], axis=1)
all_c2w.append(c2w)
all_c2w = torch.stack(all_c2w, dim=0)
return all_c2w
class DTUDatasetBase():
def setup(self, config, split):
self.config = config
self.split = split
self.rank = get_rank()
cams = np.load(os.path.join(self.config.root_dir, self.config.cameras_file))
img_sample = cv2.imread(os.path.join(self.config.root_dir, 'image', '000000.png'))
H, W = img_sample.shape[0], img_sample.shape[1]
if 'img_wh' in self.config:
w, h = self.config.img_wh
assert round(W / w * h) == H
elif 'img_downscale' in self.config:
w, h = int(W / self.config.img_downscale + 0.5), int(H / self.config.img_downscale + 0.5)
else:
raise KeyError("Either img_wh or img_downscale should be specified.")
self.w, self.h = w, h
self.img_wh = (w, h)
self.factor = w / W
mask_dir = os.path.join(self.config.root_dir, 'mask')
self.has_mask = True
self.apply_mask = self.config.apply_mask
self.directions = []
self.all_c2w, self.all_images, self.all_fg_masks = [], [], []
n_images = max([int(k.split('_')[-1]) for k in cams.keys()]) + 1
for i in range(n_images):
world_mat, scale_mat = cams[f'world_mat_{i}'], cams[f'scale_mat_{i}']
P = (world_mat @ scale_mat)[:3,:4]
K, c2w = load_K_Rt_from_P(P)
fx, fy, cx, cy = K[0,0] * self.factor, K[1,1] * self.factor, K[0,2] * self.factor, K[1,2] * self.factor
directions = get_ray_directions(w, h, fx, fy, cx, cy)
self.directions.append(directions)
c2w = torch.from_numpy(c2w).float()
# blender follows opengl camera coordinates (right up back)
# NeuS DTU data coordinate system (right down front) is different from blender
# https://github.com/Totoro97/NeuS/issues/9
# for c2w, flip the sign of input camera coordinate yz
c2w_ = c2w.clone()
c2w_[:3,1:3] *= -1. # flip input sign
self.all_c2w.append(c2w_[:3,:4])
if self.split in ['train', 'val']:
img_path = os.path.join(self.config.root_dir, 'image', f'{i:06d}.png')
img = Image.open(img_path)
img = img.resize(self.img_wh, Image.BICUBIC)
img = TF.to_tensor(img).permute(1, 2, 0)[...,:3]
mask_path = os.path.join(mask_dir, f'{i:03d}.png')
mask = Image.open(mask_path).convert('L') # (H, W, 1)
mask = mask.resize(self.img_wh, Image.BICUBIC)
mask = TF.to_tensor(mask)[0]
self.all_fg_masks.append(mask) # (h, w)
self.all_images.append(img)
self.all_c2w = torch.stack(self.all_c2w, dim=0)
if self.split == 'test':
self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.config.n_test_traj_steps)
self.all_images = torch.zeros((self.config.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32)
self.all_fg_masks = torch.zeros((self.config.n_test_traj_steps, self.h, self.w), dtype=torch.float32)
self.directions = self.directions[0]
else:
self.all_images, self.all_fg_masks = torch.stack(self.all_images, dim=0), torch.stack(self.all_fg_masks, dim=0)
self.directions = torch.stack(self.directions, dim=0)
self.directions = self.directions.float().to(self.rank)
self.all_c2w, self.all_images, self.all_fg_masks = \
self.all_c2w.float().to(self.rank), \
self.all_images.float().to(self.rank), \
self.all_fg_masks.float().to(self.rank)
class DTUDataset(Dataset, DTUDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __len__(self):
return len(self.all_images)
def __getitem__(self, index):
return {
'index': index
}
class DTUIterableDataset(IterableDataset, DTUDatasetBase):
def __init__(self, config, split):
self.setup(config, split)
def __iter__(self):
while True:
yield {}
@datasets.register('dtu')
class DTUDataModule(pl.LightningDataModule):
def __init__(self, config):
super().__init__()
self.config = config
def setup(self, stage=None):
if stage in [None, 'fit']:
self.train_dataset = DTUIterableDataset(self.config, 'train')
if stage in [None, 'fit', 'validate']:
self.val_dataset = DTUDataset(self.config, self.config.get('val_split', 'train'))
if stage in [None, 'test']:
self.test_dataset = DTUDataset(self.config, self.config.get('test_split', 'test'))
if stage in [None, 'predict']:
self.predict_dataset = DTUDataset(self.config, 'train')
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size):
sampler = None
return DataLoader(
dataset,
num_workers=os.cpu_count(),
batch_size=batch_size,
pin_memory=True,
sampler=sampler
)
def train_dataloader(self):
return self.general_loader(self.train_dataset, batch_size=1)
def val_dataloader(self):
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self):
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self):
return self.general_loader(self.predict_dataset, batch_size=1)
|