File size: 7,311 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import json
import math
import numpy as np
from PIL import Image
import cv2

import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF

import pytorch_lightning as pl

import datasets
from models.ray_utils import get_ray_directions
from utils.misc import get_rank


def load_K_Rt_from_P(P=None):
    out = cv2.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K / K[2, 2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()
    pose[:3, 3] = (t[:3] / t[3])[:, 0]

    return intrinsics, pose

def create_spheric_poses(cameras, n_steps=120):
    center = torch.as_tensor([0.,0.,0.], dtype=cameras.dtype, device=cameras.device)
    cam_center = F.normalize(cameras.mean(0), p=2, dim=-1) * cameras.mean(0).norm(2)
    eigvecs = torch.linalg.eig(cameras.T @ cameras).eigenvectors
    rot_axis = F.normalize(eigvecs[:,1].real.float(), p=2, dim=-1)
    up = rot_axis
    rot_dir = torch.cross(rot_axis, cam_center)
    max_angle = (F.normalize(cameras, p=2, dim=-1) * F.normalize(cam_center, p=2, dim=-1)).sum(-1).acos().max()

    all_c2w = []
    for theta in torch.linspace(-max_angle, max_angle, n_steps):
        cam_pos = cam_center * math.cos(theta) + rot_dir * math.sin(theta)
        l = F.normalize(center - cam_pos, p=2, dim=0)
        s = F.normalize(l.cross(up), p=2, dim=0)
        u = F.normalize(s.cross(l), p=2, dim=0)
        c2w = torch.cat([torch.stack([s, u, -l], dim=1), cam_pos[:,None]], axis=1)
        all_c2w.append(c2w)

    all_c2w = torch.stack(all_c2w, dim=0)
    
    return all_c2w

class DTUDatasetBase():
    def setup(self, config, split):
        self.config = config
        self.split = split
        self.rank = get_rank()

        cams = np.load(os.path.join(self.config.root_dir, self.config.cameras_file))

        img_sample = cv2.imread(os.path.join(self.config.root_dir, 'image', '000000.png'))
        H, W = img_sample.shape[0], img_sample.shape[1]

        if 'img_wh' in self.config:
            w, h = self.config.img_wh
            assert round(W / w * h) == H
        elif 'img_downscale' in self.config:
            w, h = int(W / self.config.img_downscale + 0.5), int(H / self.config.img_downscale + 0.5)
        else:
            raise KeyError("Either img_wh or img_downscale should be specified.")

        self.w, self.h = w, h
        self.img_wh = (w, h)
        self.factor = w / W

        mask_dir = os.path.join(self.config.root_dir, 'mask')
        self.has_mask = True
        self.apply_mask = self.config.apply_mask
        
        self.directions = []
        self.all_c2w, self.all_images, self.all_fg_masks = [], [], []

        n_images = max([int(k.split('_')[-1]) for k in cams.keys()]) + 1

        for i in range(n_images):
            world_mat, scale_mat = cams[f'world_mat_{i}'], cams[f'scale_mat_{i}']
            P = (world_mat @ scale_mat)[:3,:4]
            K, c2w = load_K_Rt_from_P(P)
            fx, fy, cx, cy = K[0,0] * self.factor, K[1,1] * self.factor, K[0,2] * self.factor, K[1,2] * self.factor
            directions = get_ray_directions(w, h, fx, fy, cx, cy)
            self.directions.append(directions)
            
            c2w = torch.from_numpy(c2w).float()

            # blender follows opengl camera coordinates (right up back)
            # NeuS DTU data coordinate system (right down front) is different from blender
            # https://github.com/Totoro97/NeuS/issues/9
            # for c2w, flip the sign of input camera coordinate yz
            c2w_ = c2w.clone()
            c2w_[:3,1:3] *= -1. # flip input sign
            self.all_c2w.append(c2w_[:3,:4])         

            if self.split in ['train', 'val']:
                img_path = os.path.join(self.config.root_dir, 'image', f'{i:06d}.png')
                img = Image.open(img_path)
                img = img.resize(self.img_wh, Image.BICUBIC)
                img = TF.to_tensor(img).permute(1, 2, 0)[...,:3]

                mask_path = os.path.join(mask_dir, f'{i:03d}.png')
                mask = Image.open(mask_path).convert('L') # (H, W, 1)
                mask = mask.resize(self.img_wh, Image.BICUBIC)
                mask = TF.to_tensor(mask)[0]

                self.all_fg_masks.append(mask) # (h, w)
                self.all_images.append(img)

        self.all_c2w = torch.stack(self.all_c2w, dim=0)

        if self.split == 'test':
            self.all_c2w = create_spheric_poses(self.all_c2w[:,:,3], n_steps=self.config.n_test_traj_steps)
            self.all_images = torch.zeros((self.config.n_test_traj_steps, self.h, self.w, 3), dtype=torch.float32)
            self.all_fg_masks = torch.zeros((self.config.n_test_traj_steps, self.h, self.w), dtype=torch.float32)
            self.directions = self.directions[0]
        else:
            self.all_images, self.all_fg_masks = torch.stack(self.all_images, dim=0), torch.stack(self.all_fg_masks, dim=0)  
            self.directions = torch.stack(self.directions, dim=0)

        self.directions = self.directions.float().to(self.rank)
        self.all_c2w, self.all_images, self.all_fg_masks = \
            self.all_c2w.float().to(self.rank), \
            self.all_images.float().to(self.rank), \
            self.all_fg_masks.float().to(self.rank)
        

class DTUDataset(Dataset, DTUDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __len__(self):
        return len(self.all_images)
    
    def __getitem__(self, index):
        return {
            'index': index
        }


class DTUIterableDataset(IterableDataset, DTUDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __iter__(self):
        while True:
            yield {}


@datasets.register('dtu')
class DTUDataModule(pl.LightningDataModule):
    def __init__(self, config):
        super().__init__()
        self.config = config
    
    def setup(self, stage=None):
        if stage in [None, 'fit']:
            self.train_dataset = DTUIterableDataset(self.config, 'train')
        if stage in [None, 'fit', 'validate']:
            self.val_dataset = DTUDataset(self.config, self.config.get('val_split', 'train'))
        if stage in [None, 'test']:
            self.test_dataset = DTUDataset(self.config, self.config.get('test_split', 'test'))
        if stage in [None, 'predict']:
            self.predict_dataset = DTUDataset(self.config, 'train')    

    def prepare_data(self):
        pass
    
    def general_loader(self, dataset, batch_size):
        sampler = None
        return DataLoader(
            dataset, 
            num_workers=os.cpu_count(), 
            batch_size=batch_size,
            pin_memory=True,
            sampler=sampler
        )
    
    def train_dataloader(self):
        return self.general_loader(self.train_dataset, batch_size=1)

    def val_dataloader(self):
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1) 

    def predict_dataloader(self):
        return self.general_loader(self.predict_dataset, batch_size=1)