File size: 8,783 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import json
import math
import numpy as np
from PIL import Image

import torch
from torch.utils.data import Dataset, DataLoader, IterableDataset
import torchvision.transforms.functional as TF
from torchvision.utils import make_grid, save_image
from einops import rearrange
from mediapy import read_video
from pathlib import Path
from rembg import remove, new_session

import pytorch_lightning as pl

import datasets
from models.ray_utils import get_ray_directions
from utils.misc import get_rank
from datasets.ortho import (
    inv_RT,
    camNormal2worldNormal,
    RT_opengl2opencv,
    normal_opengl2opencv,
)
from utils.dpt import DPT


def get_c2w_from_up_and_look_at(
    up,
    look_at,
    pos,
    opengl=False,
):
    up = up / np.linalg.norm(up)
    z = look_at - pos
    z = z / np.linalg.norm(z)
    y = -up
    x = np.cross(y, z)
    x /= np.linalg.norm(x)
    y = np.cross(z, x)

    c2w = np.zeros([4, 4], dtype=np.float32)
    c2w[:3, 0] = x
    c2w[:3, 1] = y
    c2w[:3, 2] = z
    c2w[:3, 3] = pos
    c2w[3, 3] = 1.0

    # opencv to opengl
    if opengl:
        c2w[..., 1:3] *= -1

    return c2w


def get_uniform_poses(num_frames, radius, elevation, opengl=False):
    T = num_frames
    azimuths = np.deg2rad(np.linspace(0, 360, T + 1)[:T])
    elevations = np.full_like(azimuths, np.deg2rad(elevation))
    cam_dists = np.full_like(azimuths, radius)

    campos = np.stack(
        [
            cam_dists * np.cos(elevations) * np.cos(azimuths),
            cam_dists * np.cos(elevations) * np.sin(azimuths),
            cam_dists * np.sin(elevations),
        ],
        axis=-1,
    )

    center = np.array([0, 0, 0], dtype=np.float32)
    up = np.array([0, 0, 1], dtype=np.float32)
    poses = []
    for t in range(T):
        poses.append(get_c2w_from_up_and_look_at(up, center, campos[t], opengl=opengl))

    return np.stack(poses, axis=0)


def blender2midas(img):
    """Blender: rub
    midas: lub
    """
    img[..., 0] = -img[..., 0]
    img[..., 1] = -img[..., 1]
    img[..., -1] = -img[..., -1]
    return img


def midas2blender(img):
    """Blender: rub
    midas: lub
    """
    img[..., 0] = -img[..., 0]
    img[..., 1] = -img[..., 1]
    img[..., -1] = -img[..., -1]
    return img


class BlenderDatasetBase:
    def setup(self, config, split):
        self.config = config
        self.rank = get_rank()

        self.has_mask = True
        self.apply_mask = True

        dpt = DPT(device=self.rank, mode="normal")

        # with open(
        #     os.path.join(
        #         self.config.root_dir, self.config.scene, f"transforms_train.json"
        #     ),
        #     "r",
        # ) as f:
        #     meta = json.load(f)

        # if "w" in meta and "h" in meta:
        #     W, H = int(meta["w"]), int(meta["h"])
        # else:
        #     W, H = 800, 800
        frames = read_video(Path(self.config.root_dir) / f"{self.config.scene}")
        rembg_session = new_session()
        num_frames, H, W = frames.shape[:3]

        if "img_wh" in self.config:
            w, h = self.config.img_wh
            assert round(W / w * h) == H
        elif "img_downscale" in self.config:
            w, h = W // self.config.img_downscale, H // self.config.img_downscale
        else:
            raise KeyError("Either img_wh or img_downscale should be specified.")

        self.w, self.h = w, h
        self.img_wh = (self.w, self.h)

        # self.near, self.far = self.config.near_plane, self.config.far_plane

        self.focal = 0.5 * w / math.tan(0.5 * np.deg2rad(60))  # scaled focal length

        # ray directions for all pixels, same for all images (same H, W, focal)
        self.directions = get_ray_directions(
            self.w, self.h, self.focal, self.focal, self.w // 2, self.h // 2
        ).to(
            self.rank
        )  # (h, w, 3)

        self.all_c2w, self.all_images, self.all_fg_masks = [], [], []

        radius = 2.0
        elevation = 0.0
        poses = get_uniform_poses(num_frames, radius, elevation, opengl=True)
        for i, (c2w, frame) in enumerate(zip(poses, frames)):
            c2w = torch.from_numpy(np.array(c2w)[:3, :4])
            self.all_c2w.append(c2w)

            img = Image.fromarray(frame)
            img = remove(img, session=rembg_session)
            img = img.resize(self.img_wh, Image.BICUBIC)
            img = TF.to_tensor(img).permute(1, 2, 0)  # (4, h, w) => (h, w, 4)

            self.all_fg_masks.append(img[..., -1])  # (h, w)
            self.all_images.append(img[..., :3])

        self.all_c2w, self.all_images, self.all_fg_masks = (
            torch.stack(self.all_c2w, dim=0).float().to(self.rank),
            torch.stack(self.all_images, dim=0).float().to(self.rank),
            torch.stack(self.all_fg_masks, dim=0).float().to(self.rank),
        )

        self.normals = dpt(self.all_images)

        self.all_masks = self.all_fg_masks.cpu().numpy() > 0.1

        self.normals = self.normals * 2.0 - 1.0
        self.normals = midas2blender(self.normals).cpu().numpy()
        # self.normals = self.normals.cpu().numpy()
        self.normals[..., 0] *= -1
        self.normals[~self.all_masks] = [0, 0, 0]
        normals = rearrange(self.normals, "b h w c -> b c h w")
        normals = normals * 0.5 + 0.5
        normals = torch.from_numpy(normals)
        # save_image(make_grid(normals, nrow=4), "tmp/normals.png")
        # exit(0)

        (
            self.all_poses,
            self.all_normals,
            self.all_normals_world,
            self.all_w2cs,
            self.all_color_masks,
        ) = ([], [], [], [], [])

        for c2w_opengl, normal in zip(self.all_c2w.cpu().numpy(), self.normals):
            RT_opengl = inv_RT(c2w_opengl)
            RT_opencv = RT_opengl2opencv(RT_opengl)
            c2w_opencv = inv_RT(RT_opencv)
            self.all_poses.append(c2w_opencv)
            self.all_w2cs.append(RT_opencv)
            normal = normal_opengl2opencv(normal)
            normal_world = camNormal2worldNormal(inv_RT(RT_opencv)[:3, :3], normal)
            self.all_normals.append(normal)
            self.all_normals_world.append(normal_world)

        self.directions = torch.stack([self.directions] * len(self.all_images))
        self.origins = self.directions
        self.all_poses = np.stack(self.all_poses)
        self.all_normals = np.stack(self.all_normals)
        self.all_normals_world = np.stack(self.all_normals_world)
        self.all_w2cs = np.stack(self.all_w2cs)

        self.all_c2w = torch.from_numpy(self.all_poses).float().to(self.rank)
        self.all_images = self.all_images.to(self.rank)
        self.all_fg_masks = self.all_fg_masks.to(self.rank)
        self.all_rgb_masks = self.all_fg_masks.to(self.rank)
        self.all_normals_world = (
            torch.from_numpy(self.all_normals_world).float().to(self.rank)
        )


class BlenderDataset(Dataset, BlenderDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __len__(self):
        return len(self.all_images)

    def __getitem__(self, index):
        return {"index": index}


class BlenderIterableDataset(IterableDataset, BlenderDatasetBase):
    def __init__(self, config, split):
        self.setup(config, split)

    def __iter__(self):
        while True:
            yield {}


@datasets.register("v3d")
class BlenderDataModule(pl.LightningDataModule):
    def __init__(self, config):
        super().__init__()
        self.config = config

    def setup(self, stage=None):
        if stage in [None, "fit"]:
            self.train_dataset = BlenderIterableDataset(
                self.config, self.config.train_split
            )
        if stage in [None, "fit", "validate"]:
            self.val_dataset = BlenderDataset(self.config, self.config.val_split)
        if stage in [None, "test"]:
            self.test_dataset = BlenderDataset(self.config, self.config.test_split)
        if stage in [None, "predict"]:
            self.predict_dataset = BlenderDataset(self.config, self.config.train_split)

    def prepare_data(self):
        pass

    def general_loader(self, dataset, batch_size):
        sampler = None
        return DataLoader(
            dataset,
            num_workers=os.cpu_count(),
            batch_size=batch_size,
            pin_memory=True,
            sampler=sampler,
        )

    def train_dataloader(self):
        return self.general_loader(self.train_dataset, batch_size=1)

    def val_dataloader(self):
        return self.general_loader(self.val_dataset, batch_size=1)

    def test_dataloader(self):
        return self.general_loader(self.test_dataset, batch_size=1)

    def predict_dataloader(self):
        return self.general_loader(self.predict_dataset, batch_size=1)