Spaces:
Runtime error
Runtime error
File size: 4,097 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import torch
import numpy as np
def cast_rays(ori, dir, z_vals):
return ori[..., None, :] + z_vals[..., None] * dir[..., None, :]
def get_ray_directions(W, H, fx, fy, cx, cy, use_pixel_centers=True):
pixel_center = 0.5 if use_pixel_centers else 0
i, j = np.meshgrid(
np.arange(W, dtype=np.float32) + pixel_center,
np.arange(H, dtype=np.float32) + pixel_center,
indexing='xy'
)
i, j = torch.from_numpy(i), torch.from_numpy(j)
# directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1) # (H, W, 3)
# opencv system
directions = torch.stack([(i - cx) / fx, (j - cy) / fy, torch.ones_like(i)], -1) # (H, W, 3)
return directions
def get_ortho_ray_directions_origins(W, H, use_pixel_centers=True):
pixel_center = 0.5 if use_pixel_centers else 0
i, j = np.meshgrid(
np.arange(W, dtype=np.float32) + pixel_center,
np.arange(H, dtype=np.float32) + pixel_center,
indexing='xy'
)
i, j = torch.from_numpy(i), torch.from_numpy(j)
origins = torch.stack([(i/W-0.5)*2, (j/H-0.5)*2, torch.zeros_like(i)], dim=-1) # W, H, 3
directions = torch.stack([torch.zeros_like(i), torch.zeros_like(j), torch.ones_like(i)], dim=-1) # W, H, 3
return origins, directions
def get_rays(directions, c2w, keepdim=False):
# Rotate ray directions from camera coordinate to the world coordinate
# rays_d = directions @ c2w[:, :3].T # (H, W, 3) # slow?
assert directions.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
assert c2w.ndim == 3 # (N_rays, 4, 4) / (1, 4, 4)
rays_d = (directions[:,None,:] * c2w[:,:3,:3]).sum(-1) # (N_rays, 3)
rays_o = c2w[:,:,3].expand(rays_d.shape)
elif directions.ndim == 3: # (H, W, 3)
if c2w.ndim == 2: # (4, 4)
rays_d = (directions[:,:,None,:] * c2w[None,None,:3,:3]).sum(-1) # (H, W, 3)
rays_o = c2w[None,None,:,3].expand(rays_d.shape)
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = (directions[None,:,:,None,:] * c2w[:,None,None,:3,:3]).sum(-1) # (B, H, W, 3)
rays_o = c2w[:,None,None,:,3].expand(rays_d.shape)
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
# rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3].cuda(), rays_v[:, :, :, None].cuda()).squeeze() # W, H, 3
# rays_o = torch.matmul(self.pose_all[img_idx, None, None, :3, :3].cuda(), q[:, :, :, None].cuda()).squeeze() # W, H, 3
# rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape).cuda() + rays_o # W, H, 3
def get_ortho_rays(origins, directions, c2w, keepdim=False):
# Rotate ray directions from camera coordinate to the world coordinate
# rays_d = directions @ c2w[:, :3].T # (H, W, 3) # slow?
assert directions.shape[-1] == 3
assert origins.shape[-1] == 3
if directions.ndim == 2: # (N_rays, 3)
assert c2w.ndim == 3 # (N_rays, 4, 4) / (1, 4, 4)
rays_d = torch.matmul(c2w[:, :3, :3], directions[:, :, None]).squeeze() # (N_rays, 3)
rays_o = torch.matmul(c2w[:, :3, :3], origins[:, :, None]).squeeze() # (N_rays, 3)
rays_o = c2w[:,:3,3].expand(rays_d.shape) + rays_o
elif directions.ndim == 3: # (H, W, 3)
if c2w.ndim == 2: # (4, 4)
rays_d = torch.matmul(c2w[None, None, :3, :3], directions[:, :, :, None]).squeeze() # (H, W, 3)
rays_o = torch.matmul(c2w[None, None, :3, :3], origins[:, :, :, None]).squeeze() # (H, W, 3)
rays_o = c2w[None, None,:3,3].expand(rays_d.shape) + rays_o
elif c2w.ndim == 3: # (B, 4, 4)
rays_d = torch.matmul(c2w[:,None, None, :3, :3], directions[None, :, :, :, None]).squeeze() # # (B, H, W, 3)
rays_o = torch.matmul(c2w[:,None, None, :3, :3], origins[None, :, :, :, None]).squeeze() # # (B, H, W, 3)
rays_o = c2w[:,None, None, :3,3].expand(rays_d.shape) + rays_o
if not keepdim:
rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)
return rays_o, rays_d
|