File size: 47,971 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
'''
Common camera utilities
'''

import math
import numpy as np
import torch
import torch.nn as nn
from pytorch3d.renderer import PerspectiveCameras
from pytorch3d.renderer.cameras import look_at_view_transform
from pytorch3d.renderer.implicit.raysampling import _xy_to_ray_bundle

class RelativeCameraLoader(nn.Module):
    def __init__(self,
            query_batch_size=1,
            rand_query=True,
            relative=True,
            center_at_origin=False,
        ):
        super().__init__()

        self.query_batch_size = query_batch_size
        self.rand_query = rand_query
        self.relative = relative
        self.center_at_origin = center_at_origin

    def plot_cameras(self, cameras_1, cameras_2):
        '''
        Helper function to plot cameras

        Args:
            cameras_1 (PyTorch3D camera): cameras object to plot
            cameras_2 (PyTorch3D camera): cameras object to plot
        '''
        from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene
        import plotly.graph_objects as go
        plotlyplot = plot_scene(
                {
                    'scene_batch': {
                        'cameras': cameras_1.to('cpu'),
                        'rel_cameras': cameras_2.to('cpu'),
                    }
                },
                camera_scale=.5,#0.05,
                pointcloud_max_points=10000,
                pointcloud_marker_size=1.0,
                raybundle_max_rays=100
            )
        plotlyplot.show()

    def concat_cameras(self, camera_list):
        '''
        Returns a concatenation of a list of cameras

        Args:
            camera_list (List[PyTorch3D camera]): a list of PyTorch3D cameras
        '''
        R_list, T_list, f_list, c_list, size_list = [], [], [], [], []
        for cameras in camera_list:
            R_list.append(cameras.R)
            T_list.append(cameras.T)
            f_list.append(cameras.focal_length)
            c_list.append(cameras.principal_point)
            size_list.append(cameras.image_size)

        camera_slice = PerspectiveCameras(
            R = torch.cat(R_list), 
            T = torch.cat(T_list), 
            focal_length = torch.cat(f_list),
            principal_point = torch.cat(c_list),
            image_size = torch.cat(size_list),
            device = camera_list[0].device,
        )
        return camera_slice

    def get_camera_slice(self, scene_cameras, indices):
        '''
        Return a subset of cameras from a super set given indices

        Args:
            scene_cameras (PyTorch3D Camera): cameras object
            indices (tensor or List): a flat list or tensor of indices

        Returns:
            camera_slice (PyTorch3D Camera) - cameras subset
        '''
        camera_slice = PerspectiveCameras(
            R = scene_cameras.R[indices], 
            T = scene_cameras.T[indices], 
            focal_length = scene_cameras.focal_length[indices],
            principal_point = scene_cameras.principal_point[indices],
            image_size = scene_cameras.image_size[indices],
            device = scene_cameras.device,
        )
        return camera_slice


    def get_relative_camera(self, scene_cameras:PerspectiveCameras, query_idx, center_at_origin=False):
        """
        Transform context cameras relative to a base query camera

        Args:
            scene_cameras (PyTorch3D Camera): cameras object
            query_idx (tensor or List): a length 1 list defining query idx

        Returns:
            cams_relative (PyTorch3D Camera): cameras object relative to query camera
        """

        query_camera = self.get_camera_slice(scene_cameras, query_idx)
        query_world2view = query_camera.get_world_to_view_transform()
        all_world2view = scene_cameras.get_world_to_view_transform()
        
        if center_at_origin:
            identity_cam = PerspectiveCameras(device=scene_cameras.device, R=query_camera.R, T=query_camera.T)
        else:
            T = torch.zeros((1, 3))
            identity_cam = PerspectiveCameras(device=scene_cameras.device, R=query_camera.R, T=T)
         
        identity_world2view  = identity_cam.get_world_to_view_transform()

        # compose the relative transformation as g_i^{-1} g_j
        relative_world2view = identity_world2view.inverse().compose(all_world2view)
        
        # generate a camera from the relative transform
        relative_matrix = relative_world2view.get_matrix()
        cams_relative = PerspectiveCameras(
                            R = relative_matrix[:, :3, :3],
                            T = relative_matrix[:, 3, :3],
                            focal_length = scene_cameras.focal_length,
                            principal_point = scene_cameras.principal_point,
                            image_size = scene_cameras.image_size,
                            device = scene_cameras.device,
                        )
        return cams_relative

    def forward(self, scene_cameras, scene_rgb=None, scene_masks=None, query_idx=None, context_size=3, context_idx=None, return_context=False):
        '''
        Return a sampled batch of query and context cameras (used in training)

        Args:
            scene_cameras (PyTorch3D Camera): a batch of PyTorch3D cameras
            scene_rgb (Tensor): a batch of rgb
            scene_masks (Tensor): a batch of masks (optional)
            query_idx (List or Tensor): desired query idx (optional)
            context_size (int): number of views for context

        Returns:
            query_cameras, query_rgb, query_masks: random query view
            context_cameras, context_rgb, context_masks: context views
        '''

        if query_idx is None:
            query_idx = [0]
            if self.rand_query:
                rand = torch.randperm(len(scene_cameras))
                query_idx = rand[:1]

        if context_idx is None:
            rand = torch.randperm(len(scene_cameras))
            context_idx = rand[:context_size]

        
        if self.relative:
            rel_cameras = self.get_relative_camera(scene_cameras, query_idx, center_at_origin=self.center_at_origin)
        else:
            rel_cameras = scene_cameras

        query_cameras = self.get_camera_slice(rel_cameras, query_idx)
        query_rgb = None
        if scene_rgb is not None:
            query_rgb = scene_rgb[query_idx]
        query_masks = None
        if scene_masks is not None:
            query_masks = scene_masks[query_idx]

        context_cameras = self.get_camera_slice(rel_cameras, context_idx)
        context_rgb = None
        if scene_rgb is not None:
            context_rgb = scene_rgb[context_idx]
        context_masks = None
        if scene_masks is not None:
            context_masks = scene_masks[context_idx]
        
        if return_context:
            return query_cameras, query_rgb, query_masks, context_cameras, context_rgb, context_masks, context_idx
        return query_cameras, query_rgb, query_masks, context_cameras, context_rgb, context_masks


def get_interpolated_path(cameras: PerspectiveCameras, n=50, method='circle', theta_offset_max=0.0):
    '''
    Given a camera object containing a set of cameras, fit a circle and get 
    interpolated cameras

    Args:
        cameras (PyTorch3D Camera): input camera object
        n (int): length of cameras in new path
        method (str): 'circle'
        theta_offset_max (int): max camera jitter in radians

    Returns:
        path_cameras (PyTorch3D Camera): interpolated cameras
    '''
    device = cameras.device
    cameras = cameras.cpu()

    if method == 'circle':

        #@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
        #@ Fit plane
        P = cameras.get_camera_center().cpu()
        P_mean = P.mean(axis=0)
        P_centered = P - P_mean
        U,s,V = torch.linalg.svd(P_centered)
        normal = V[2,:]
        if (normal*2 - P_mean).norm() < (normal - P_mean).norm():
            normal = - normal
        d = -torch.dot(P_mean, normal)  # d = -<p,n>    

        #@ Project pts to plane
        P_xy = rodrigues_rot(P_centered, normal, torch.tensor([0.0,0.0,1.0]))
        
        #@ Fit circle in 2D
        xc, yc, r = fit_circle_2d(P_xy[:,0], P_xy[:,1])
        t = torch.linspace(0, 2*math.pi, 100)
        xx = xc + r*torch.cos(t)
        yy = yc + r*torch.sin(t)

        #@ Project circle to 3D
        C = rodrigues_rot(torch.tensor([xc,yc,0.0]), torch.tensor([0.0,0.0,1.0]), normal) + P_mean
        C = C.flatten()

        #@ Get pts n 3D
        t = torch.linspace(0, 2*math.pi, n)
        u = P[0] - C
        new_camera_centers = generate_circle_by_vectors(t, C, r, normal, u)

        #@ OPTIONAL THETA OFFSET
        if theta_offset_max > 0.0:
            aug_theta = (torch.rand((new_camera_centers.shape[0])) * (2*theta_offset_max)) - theta_offset_max
            new_camera_centers = rodrigues_rot2(new_camera_centers, normal, aug_theta)

        #@ Get camera look at
        new_camera_look_at = get_nearest_centroid(cameras)

        #@ Get R T
        up_vec = -normal
        R, T = look_at_view_transform(eye=new_camera_centers, at=new_camera_look_at.unsqueeze(0), up=up_vec.unsqueeze(0), device=cameras.device)
    else:
        raise NotImplementedError
    
    c = (cameras.principal_point).mean(dim=0, keepdim=True).expand(R.shape[0],-1)
    f = (cameras.focal_length).mean(dim=0, keepdim=True).expand(R.shape[0],-1)
    image_size = cameras.image_size[:1].expand(R.shape[0],-1)


    path_cameras = PerspectiveCameras(R=R,T=T,focal_length=f,principal_point=c,image_size=image_size, device=device)
    cameras = cameras.to(device)
    return path_cameras

def np_normalize(vec, axis=-1):
    vec = vec / (np.linalg.norm(vec, axis=axis, keepdims=True) + 1e-9)
    return vec


#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# Generate points on circle
# P(t) = r*cos(t)*u + r*sin(t)*(n x u) + C
#-------------------------------------------------------------------------------
def generate_circle_by_vectors(t, C, r, n, u):
    n = n/torch.linalg.norm(n)
    u = u/torch.linalg.norm(u)
    P_circle = r*torch.cos(t)[:,None]*u + r*torch.sin(t)[:,None]*torch.cross(n,u) + C
    return P_circle

#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# FIT CIRCLE 2D
# - Find center [xc, yc] and radius r of circle fitting to set of 2D points
# - Optionally specify weights for points
#
# - Implicit circle function:
#   (x-xc)^2 + (y-yc)^2 = r^2
#   (2*xc)*x + (2*yc)*y + (r^2-xc^2-yc^2) = x^2+y^2
#   c[0]*x + c[1]*y + c[2] = x^2+y^2
#
# - Solution by method of least squares:
#   A*c = b, c' = argmin(||A*c - b||^2)
#   A = [x y 1], b = [x^2+y^2]
#-------------------------------------------------------------------------------
def fit_circle_2d(x, y, w=[]):
    
    A = torch.stack([x, y, torch.ones(len(x))]).T
    b = x**2 + y**2
    
    # Modify A,b for weighted least squares
    if len(w) == len(x):
        W = torch.diag(w)
        A = torch.dot(W,A)
        b = torch.dot(W,b)
    
    # Solve by method of least squares
    c = torch.linalg.lstsq(A,b,rcond=None)[0]
    
    # Get circle parameters from solution c
    xc = c[0]/2
    yc = c[1]/2
    r = torch.sqrt(c[2] + xc**2 + yc**2)
    return xc, yc, r

#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# RODRIGUES ROTATION
# - Rotate given points based on a starting and ending vector
# - Axis k and angle of rotation theta given by vectors n0,n1
#   P_rot = P*cos(theta) + (k x P)*sin(theta) + k*<k,P>*(1-cos(theta))
#-------------------------------------------------------------------------------
def rodrigues_rot(P, n0, n1):
    
    # If P is only 1d array (coords of single point), fix it to be matrix
    if P.ndim == 1:
        P = P[None,...]
    
    # Get vector of rotation k and angle theta
    n0 = n0/torch.linalg.norm(n0)
    n1 = n1/torch.linalg.norm(n1)
    k = torch.cross(n0,n1)
    k = k/torch.linalg.norm(k)
    theta = torch.arccos(torch.dot(n0,n1))
    
    # Compute rotated points
    P_rot = torch.zeros((len(P),3))
    for i in range(len(P)):
        P_rot[i] = P[i]*torch.cos(theta) + torch.cross(k,P[i])*torch.sin(theta) + k*torch.dot(k,P[i])*(1-torch.cos(theta))

    return P_rot

def rodrigues_rot2(P, n1, theta):
    '''
    Rotate points P wrt axis k by theta radians
    '''
    
    # If P is only 1d array (coords of single point), fix it to be matrix
    if P.ndim == 1:
        P = P[None,...]
    
    k = torch.cross(P, n1.unsqueeze(0))
    k = k/torch.linalg.norm(k)
    
    # Compute rotated points
    P_rot = torch.zeros((len(P),3))
    for i in range(len(P)):
        P_rot[i] = P[i]*torch.cos(theta[i]) + torch.cross(k[i],P[i])*torch.sin(theta[i]) + k[i]*torch.dot(k[i],P[i])*(1-torch.cos(theta[i]))

    return P_rot

#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# ANGLE BETWEEN
# - Get angle between vectors u,v with sign based on plane with unit normal n
#-------------------------------------------------------------------------------
def angle_between(u, v, n=None):
    if n is None:
        return torch.arctan2(torch.linalg.norm(torch.cross(u,v)), torch.dot(u,v))
    else:
        return torch.arctan2(torch.dot(n,torch.cross(u,v)), torch.dot(u,v))

#@ https://www.crewes.org/Documents/ResearchReports/2010/CRR201032.pdf
def get_nearest_centroid(cameras: PerspectiveCameras):
    '''
    Given PyTorch3D cameras, find the nearest point along their principal ray
    '''

    #@ GET CAMERA CENTERS AND DIRECTIONS
    camera_centers = cameras.get_camera_center()

    c_mean = (cameras.principal_point).mean(dim=0)
    xy_grid = c_mean.unsqueeze(0).unsqueeze(0)
    ray_vis = _xy_to_ray_bundle(cameras, xy_grid.expand(len(cameras),-1,-1), 1.0, 15.0, 20, True)
    camera_directions = ray_vis.directions

    #@ CONSTRUCT MATRICIES
    A = torch.zeros((3*len(cameras)), len(cameras)+3)
    b = torch.zeros((3*len(cameras), 1))
    A[:,:3] = torch.eye(3).repeat(len(cameras),1)
    for ci in range(len(camera_directions)):
        A[3*ci:3*ci+3, ci+3] = -camera_directions[ci]
        b[3*ci:3*ci+3, 0] = camera_centers[ci]
    #' A (3*N, 3*N+3)   b (3*N, 1)

    #@ SVD
    U, s, VT = torch.linalg.svd(A)
    Sinv = torch.diag(1/s)
    if len(s) < 3*len(cameras):
        Sinv = torch.cat((Sinv, torch.zeros((Sinv.shape[0], 3*len(cameras) - Sinv.shape[1]), device=Sinv.device)), dim=1)
    x = torch.matmul(VT.T, torch.matmul(Sinv,torch.matmul(U.T, b)))
    
    centroid = x[:3,0]
    return centroid


def get_angles(target_camera: PerspectiveCameras, context_cameras: PerspectiveCameras, centroid=None):
    '''
    Get angles between cameras wrt a centroid

    Args:
        target_camera (Pytorch3D Camera): a camera object with a single camera
        context_cameras (PyTorch3D Camera): a camera object

    Returns:
        theta_deg (Tensor): a tensor containing angles in degrees
    '''
    a1 = target_camera.get_camera_center()
    b1 = context_cameras.get_camera_center()

    a = a1 - centroid.unsqueeze(0)
    a = a.expand(len(context_cameras), -1)
    b = b1 - centroid.unsqueeze(0)

    ab_dot = (a*b).sum(dim=-1)
    theta = torch.acos((ab_dot)/(torch.linalg.norm(a, dim=-1) * torch.linalg.norm(b, dim=-1)))
    theta_deg = theta * 180 / math.pi
    
    return theta_deg

    
import math
from typing import List, Literal, Optional, Tuple

import numpy as np
import torch
from jaxtyping import Float
from numpy.typing import NDArray
from torch import Tensor

_EPS = np.finfo(float).eps * 4.0


def unit_vector(data: NDArray, axis: Optional[int] = None) -> np.ndarray:
    """Return ndarray normalized by length, i.e. Euclidean norm, along axis.

    Args:
        axis: the axis along which to normalize into unit vector
        out: where to write out the data to. If None, returns a new np ndarray
    """
    data = np.array(data, dtype=np.float64, copy=True)
    if data.ndim == 1:
        data /= math.sqrt(np.dot(data, data))
        return data
    length = np.atleast_1d(np.sum(data * data, axis))
    np.sqrt(length, length)
    if axis is not None:
        length = np.expand_dims(length, axis)
    data /= length
    return data


def quaternion_from_matrix(matrix: NDArray, isprecise: bool = False) -> np.ndarray:
    """Return quaternion from rotation matrix.

    Args:
        matrix: rotation matrix to obtain quaternion
        isprecise: if True, input matrix is assumed to be precise rotation matrix and a faster algorithm is used.
    """
    M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
    if isprecise:
        q = np.empty((4,))
        t = np.trace(M)
        if t > M[3, 3]:
            q[0] = t
            q[3] = M[1, 0] - M[0, 1]
            q[2] = M[0, 2] - M[2, 0]
            q[1] = M[2, 1] - M[1, 2]
        else:
            i, j, k = 1, 2, 3
            if M[1, 1] > M[0, 0]:
                i, j, k = 2, 3, 1
            if M[2, 2] > M[i, i]:
                i, j, k = 3, 1, 2
            t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
            q[i] = t
            q[j] = M[i, j] + M[j, i]
            q[k] = M[k, i] + M[i, k]
            q[3] = M[k, j] - M[j, k]
        q *= 0.5 / math.sqrt(t * M[3, 3])
    else:
        m00 = M[0, 0]
        m01 = M[0, 1]
        m02 = M[0, 2]
        m10 = M[1, 0]
        m11 = M[1, 1]
        m12 = M[1, 2]
        m20 = M[2, 0]
        m21 = M[2, 1]
        m22 = M[2, 2]
        # symmetric matrix K
        K = [
            [m00 - m11 - m22, 0.0, 0.0, 0.0],
            [m01 + m10, m11 - m00 - m22, 0.0, 0.0],
            [m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
            [m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
        ]
        K = np.array(K)
        K /= 3.0
        # quaternion is eigenvector of K that corresponds to largest eigenvalue
        w, V = np.linalg.eigh(K)
        q = V[np.array([3, 0, 1, 2]), np.argmax(w)]
    if q[0] < 0.0:
        np.negative(q, q)
    return q


def quaternion_slerp(
    quat0: NDArray, quat1: NDArray, fraction: float, spin: int = 0, shortestpath: bool = True
) -> np.ndarray:
    """Return spherical linear interpolation between two quaternions.
    Args:
        quat0: first quaternion
        quat1: second quaternion
        fraction: how much to interpolate between quat0 vs quat1 (if 0, closer to quat0; if 1, closer to quat1)
        spin: how much of an additional spin to place on the interpolation
        shortestpath: whether to return the short or long path to rotation
    """
    q0 = unit_vector(quat0[:4])
    q1 = unit_vector(quat1[:4])
    if q0 is None or q1 is None:
        raise ValueError("Input quaternions invalid.")
    if fraction == 0.0:
        return q0
    if fraction == 1.0:
        return q1
    d = np.dot(q0, q1)
    if abs(abs(d) - 1.0) < _EPS:
        return q0
    if shortestpath and d < 0.0:
        # invert rotation
        d = -d
        np.negative(q1, q1)
    angle = math.acos(d) + spin * math.pi
    if abs(angle) < _EPS:
        return q0
    isin = 1.0 / math.sin(angle)
    q0 *= math.sin((1.0 - fraction) * angle) * isin
    q1 *= math.sin(fraction * angle) * isin
    q0 += q1
    return q0


def quaternion_matrix(quaternion: NDArray) -> np.ndarray:
    """Return homogeneous rotation matrix from quaternion.

    Args:
        quaternion: value to convert to matrix
    """
    q = np.array(quaternion, dtype=np.float64, copy=True)
    n = np.dot(q, q)
    if n < _EPS:
        return np.identity(4)
    q *= math.sqrt(2.0 / n)
    q = np.outer(q, q)
    return np.array(
        [
            [1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0], 0.0],
            [q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0], 0.0],
            [q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0],
            [0.0, 0.0, 0.0, 1.0],
        ]
    )


def get_interpolated_poses(pose_a: NDArray, pose_b: NDArray, steps: int = 10) -> List[float]:
    """Return interpolation of poses with specified number of steps.
    Args:
        pose_a: first pose
        pose_b: second pose
        steps: number of steps the interpolated pose path should contain
    """

    quat_a = quaternion_from_matrix(pose_a[:3, :3])
    quat_b = quaternion_from_matrix(pose_b[:3, :3])

    ts = np.linspace(0, 1, steps)
    quats = [quaternion_slerp(quat_a, quat_b, t) for t in ts]
    trans = [(1 - t) * pose_a[:3, 3] + t * pose_b[:3, 3] for t in ts]

    poses_ab = []
    for quat, tran in zip(quats, trans):
        pose = np.identity(4)
        pose[:3, :3] = quaternion_matrix(quat)[:3, :3]
        pose[:3, 3] = tran
        poses_ab.append(pose[:3])
    return poses_ab


def get_interpolated_k(
    k_a: Float[Tensor, "3 3"], k_b: Float[Tensor, "3 3"], steps: int = 10
) -> List[Float[Tensor, "3 4"]]:
    """
    Returns interpolated path between two camera poses with specified number of steps.

    Args:
        k_a: camera matrix 1
        k_b: camera matrix 2
        steps: number of steps the interpolated pose path should contain

    Returns:
        List of interpolated camera poses
    """
    Ks: List[Float[Tensor, "3 3"]] = []
    ts = np.linspace(0, 1, steps)
    for t in ts:
        new_k = k_a * (1.0 - t) + k_b * t
        Ks.append(new_k)
    return Ks


def get_ordered_poses_and_k(
    poses: Float[Tensor, "num_poses 3 4"],
    Ks: Float[Tensor, "num_poses 3 3"],
) -> Tuple[Float[Tensor, "num_poses 3 4"], Float[Tensor, "num_poses 3 3"]]:
    """
    Returns ordered poses and intrinsics by euclidian distance between poses.

    Args:
        poses: list of camera poses
        Ks: list of camera intrinsics

    Returns:
        tuple of ordered poses and intrinsics

    """

    poses_num = len(poses)

    ordered_poses = torch.unsqueeze(poses[0], 0)
    ordered_ks = torch.unsqueeze(Ks[0], 0)

    # remove the first pose from poses
    poses = poses[1:]
    Ks = Ks[1:]

    for _ in range(poses_num - 1):
        distances = torch.norm(ordered_poses[-1][:, 3] - poses[:, :, 3], dim=1)
        idx = torch.argmin(distances)
        ordered_poses = torch.cat((ordered_poses, torch.unsqueeze(poses[idx], 0)), dim=0)
        ordered_ks = torch.cat((ordered_ks, torch.unsqueeze(Ks[idx], 0)), dim=0)
        poses = torch.cat((poses[0:idx], poses[idx + 1 :]), dim=0)
        Ks = torch.cat((Ks[0:idx], Ks[idx + 1 :]), dim=0)

    return ordered_poses, ordered_ks


def get_interpolated_poses_many(
    poses: Float[Tensor, "num_poses 3 4"],
    Ks: Float[Tensor, "num_poses 3 3"],
    steps_per_transition: int = 10,
    order_poses: bool = False,
) -> Tuple[Float[Tensor, "num_poses 3 4"], Float[Tensor, "num_poses 3 3"]]:
    """Return interpolated poses for many camera poses.

    Args:
        poses: list of camera poses
        Ks: list of camera intrinsics
        steps_per_transition: number of steps per transition
        order_poses: whether to order poses by euclidian distance

    Returns:
        tuple of new poses and intrinsics
    """
    traj = []
    k_interp = []

    if order_poses:
        poses, Ks = get_ordered_poses_and_k(poses, Ks)

    for idx in range(poses.shape[0] - 1):
        pose_a = poses[idx].cpu().numpy()
        pose_b = poses[idx + 1].cpu().numpy()
        poses_ab = get_interpolated_poses(pose_a, pose_b, steps=steps_per_transition)
        traj += poses_ab
        k_interp += get_interpolated_k(Ks[idx], Ks[idx + 1], steps=steps_per_transition)

    traj = np.stack(traj, axis=0)
    k_interp = torch.stack(k_interp, dim=0)

    return torch.tensor(traj, dtype=torch.float32), torch.tensor(k_interp, dtype=torch.float32)


def normalize(x: torch.Tensor) -> Float[Tensor, "*batch"]:
    """Returns a normalized vector."""
    return x / torch.linalg.norm(x)


def normalize_with_norm(x: torch.Tensor, dim: int) -> Tuple[torch.Tensor, torch.Tensor]:
    """Normalize tensor along axis and return normalized value with norms.

    Args:
        x: tensor to normalize.
        dim: axis along which to normalize.

    Returns:
        Tuple of normalized tensor and corresponding norm.
    """

    norm = torch.maximum(torch.linalg.vector_norm(x, dim=dim, keepdims=True), torch.tensor([_EPS]).to(x))
    return x / norm, norm


def viewmatrix(lookat: torch.Tensor, up: torch.Tensor, pos: torch.Tensor) -> Float[Tensor, "*batch"]:
    """Returns a camera transformation matrix.

    Args:
        lookat: The direction the camera is looking.
        up: The upward direction of the camera.
        pos: The position of the camera.

    Returns:
        A camera transformation matrix.
    """
    vec2 = normalize(lookat)
    vec1_avg = normalize(up)
    vec0 = normalize(torch.cross(vec1_avg, vec2))
    vec1 = normalize(torch.cross(vec2, vec0))
    m = torch.stack([vec0, vec1, vec2, pos], 1)
    return m


def get_distortion_params(
    k1: float = 0.0,
    k2: float = 0.0,
    k3: float = 0.0,
    k4: float = 0.0,
    p1: float = 0.0,
    p2: float = 0.0,
) -> Float[Tensor, "*batch"]:
    """Returns a distortion parameters matrix.

    Args:
        k1: The first radial distortion parameter.
        k2: The second radial distortion parameter.
        k3: The third radial distortion parameter.
        k4: The fourth radial distortion parameter.
        p1: The first tangential distortion parameter.
        p2: The second tangential distortion parameter.
    Returns:
        torch.Tensor: A distortion parameters matrix.
    """
    return torch.Tensor([k1, k2, k3, k4, p1, p2])


def _compute_residual_and_jacobian(
    x: torch.Tensor,
    y: torch.Tensor,
    xd: torch.Tensor,
    yd: torch.Tensor,
    distortion_params: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    """Auxiliary function of radial_and_tangential_undistort() that computes residuals and jacobians.
    Adapted from MultiNeRF:
    https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L427-L474

    Args:
        x: The updated x coordinates.
        y: The updated y coordinates.
        xd: The distorted x coordinates.
        yd: The distorted y coordinates.
        distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].

    Returns:
        The residuals (fx, fy) and jacobians (fx_x, fx_y, fy_x, fy_y).
    """

    k1 = distortion_params[..., 0]
    k2 = distortion_params[..., 1]
    k3 = distortion_params[..., 2]
    k4 = distortion_params[..., 3]
    p1 = distortion_params[..., 4]
    p2 = distortion_params[..., 5]

    # let r(x, y) = x^2 + y^2;
    #     d(x, y) = 1 + k1 * r(x, y) + k2 * r(x, y) ^2 + k3 * r(x, y)^3 +
    #                   k4 * r(x, y)^4;
    r = x * x + y * y
    d = 1.0 + r * (k1 + r * (k2 + r * (k3 + r * k4)))

    # The perfect projection is:
    # xd = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2);
    # yd = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2);
    #
    # Let's define
    #
    # fx(x, y) = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2) - xd;
    # fy(x, y) = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2) - yd;
    #
    # We are looking for a solution that satisfies
    # fx(x, y) = fy(x, y) = 0;
    fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
    fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd

    # Compute derivative of d over [x, y]
    d_r = k1 + r * (2.0 * k2 + r * (3.0 * k3 + r * 4.0 * k4))
    d_x = 2.0 * x * d_r
    d_y = 2.0 * y * d_r

    # Compute derivative of fx over x and y.
    fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
    fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y

    # Compute derivative of fy over x and y.
    fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
    fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y

    return fx, fy, fx_x, fx_y, fy_x, fy_y


# @torch_compile(dynamic=True, mode="reduce-overhead", backend="eager")
def radial_and_tangential_undistort(
    coords: torch.Tensor,
    distortion_params: torch.Tensor,
    eps: float = 1e-3,
    max_iterations: int = 10,
) -> torch.Tensor:
    """Computes undistorted coords given opencv distortion parameters.
    Adapted from MultiNeRF
    https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L477-L509

    Args:
        coords: The distorted coordinates.
        distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].
        eps: The epsilon for the convergence.
        max_iterations: The maximum number of iterations to perform.

    Returns:
        The undistorted coordinates.
    """

    # Initialize from the distorted point.
    x = coords[..., 0]
    y = coords[..., 1]

    for _ in range(max_iterations):
        fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
            x=x, y=y, xd=coords[..., 0], yd=coords[..., 1], distortion_params=distortion_params
        )
        denominator = fy_x * fx_y - fx_x * fy_y
        x_numerator = fx * fy_y - fy * fx_y
        y_numerator = fy * fx_x - fx * fy_x
        step_x = torch.where(torch.abs(denominator) > eps, x_numerator / denominator, torch.zeros_like(denominator))
        step_y = torch.where(torch.abs(denominator) > eps, y_numerator / denominator, torch.zeros_like(denominator))

        x = x + step_x
        y = y + step_y

    return torch.stack([x, y], dim=-1)


def rotation_matrix(a: Float[Tensor, "3"], b: Float[Tensor, "3"]) -> Float[Tensor, "3 3"]:
    """Compute the rotation matrix that rotates vector a to vector b.

    Args:
        a: The vector to rotate.
        b: The vector to rotate to.
    Returns:
        The rotation matrix.
    """
    a = a / torch.linalg.norm(a)
    b = b / torch.linalg.norm(b)
    v = torch.cross(a, b)
    c = torch.dot(a, b)
    # If vectors are exactly opposite, we add a little noise to one of them
    if c < -1 + 1e-8:
        eps = (torch.rand(3) - 0.5) * 0.01
        return rotation_matrix(a + eps, b)
    s = torch.linalg.norm(v)
    skew_sym_mat = torch.Tensor(
        [
            [0, -v[2], v[1]],
            [v[2], 0, -v[0]],
            [-v[1], v[0], 0],
        ]
    )
    return torch.eye(3) + skew_sym_mat + skew_sym_mat @ skew_sym_mat * ((1 - c) / (s**2 + 1e-8))


def focus_of_attention(poses: Float[Tensor, "*num_poses 4 4"], initial_focus: Float[Tensor, "3"]) -> Float[Tensor, "3"]:
    """Compute the focus of attention of a set of cameras. Only cameras
    that have the focus of attention in front of them are considered.

     Args:
        poses: The poses to orient.
        initial_focus: The 3D point views to decide which cameras are initially activated.

    Returns:
        The 3D position of the focus of attention.
    """
    # References to the same method in third-party code:
    # https://github.com/google-research/multinerf/blob/1c8b1c552133cdb2de1c1f3c871b2813f6662265/internal/camera_utils.py#L145
    # https://github.com/bmild/nerf/blob/18b8aebda6700ed659cb27a0c348b737a5f6ab60/load_llff.py#L197
    active_directions = -poses[:, :3, 2:3]
    active_origins = poses[:, :3, 3:4]
    # initial value for testing if the focus_pt is in front or behind
    focus_pt = initial_focus
    # Prune cameras which have the current have the focus_pt behind them.
    active = torch.sum(active_directions.squeeze(-1) * (focus_pt - active_origins.squeeze(-1)), dim=-1) > 0
    done = False
    # We need at least two active cameras, else fallback on the previous solution.
    # This may be the "poses" solution if no cameras are active on first iteration, e.g.
    # they are in an outward-looking configuration.
    while torch.sum(active.int()) > 1 and not done:
        active_directions = active_directions[active]
        active_origins = active_origins[active]
        # https://en.wikipedia.org/wiki/Line–line_intersection#In_more_than_two_dimensions
        m = torch.eye(3) - active_directions * torch.transpose(active_directions, -2, -1)
        mt_m = torch.transpose(m, -2, -1) @ m
        focus_pt = torch.linalg.inv(mt_m.mean(0)) @ (mt_m @ active_origins).mean(0)[:, 0]
        active = torch.sum(active_directions.squeeze(-1) * (focus_pt - active_origins.squeeze(-1)), dim=-1) > 0
        if active.all():
            # the set of active cameras did not change, so we're done.
            done = True
    return focus_pt


def auto_orient_and_center_poses(
    poses: Float[Tensor, "*num_poses 4 4"],
    method: Literal["pca", "up", "vertical", "none"] = "up",
    center_method: Literal["poses", "focus", "none"] = "poses",
) -> Tuple[Float[Tensor, "*num_poses 3 4"], Float[Tensor, "3 4"]]:
    """Orients and centers the poses.

    We provide three methods for orientation:

    - pca: Orient the poses so that the principal directions of the camera centers are aligned
        with the axes, Z corresponding to the smallest principal component.
        This method works well when all of the cameras are in the same plane, for example when
        images are taken using a mobile robot.
    - up: Orient the poses so that the average up vector is aligned with the z axis.
        This method works well when images are not at arbitrary angles.
    - vertical: Orient the poses so that the Z 3D direction projects close to the
        y axis in images. This method works better if cameras are not all
        looking in the same 3D direction, which may happen in camera arrays or in LLFF.

    There are two centering methods:

    - poses: The poses are centered around the origin.
    - focus: The origin is set to the focus of attention of all cameras (the
        closest point to cameras optical axes). Recommended for inward-looking
        camera configurations.

    Args:
        poses: The poses to orient.
        method: The method to use for orientation.
        center_method: The method to use to center the poses.

    Returns:
        Tuple of the oriented poses and the transform matrix.
    """

    origins = poses[..., :3, 3]

    mean_origin = torch.mean(origins, dim=0)
    translation_diff = origins - mean_origin

    if center_method == "poses":
        translation = mean_origin
    elif center_method == "focus":
        translation = focus_of_attention(poses, mean_origin)
    elif center_method == "none":
        translation = torch.zeros_like(mean_origin)
    else:
        raise ValueError(f"Unknown value for center_method: {center_method}")

    if method == "pca":
        _, eigvec = torch.linalg.eigh(translation_diff.T @ translation_diff)
        eigvec = torch.flip(eigvec, dims=(-1,))

        if torch.linalg.det(eigvec) < 0:
            eigvec[:, 2] = -eigvec[:, 2]

        transform = torch.cat([eigvec, eigvec @ -translation[..., None]], dim=-1)
        oriented_poses = transform @ poses

        if oriented_poses.mean(dim=0)[2, 1] < 0:
            oriented_poses[:, 1:3] = -1 * oriented_poses[:, 1:3]
    elif method in ("up", "vertical"):
        up = torch.mean(poses[:, :3, 1], dim=0)
        up = up / torch.linalg.norm(up)
        if method == "vertical":
            # If cameras are not all parallel (e.g. not in an LLFF configuration),
            # we can find the 3D direction that most projects vertically in all
            # cameras by minimizing ||Xu|| s.t. ||u||=1. This total least squares
            # problem is solved by SVD.
            x_axis_matrix = poses[:, :3, 0]
            _, S, Vh = torch.linalg.svd(x_axis_matrix, full_matrices=False)
            # Singular values are S_i=||Xv_i|| for each right singular vector v_i.
            # ||S|| = sqrt(n) because lines of X are all unit vectors and the v_i
            # are an orthonormal basis.
            # ||Xv_i|| = sqrt(sum(dot(x_axis_j,v_i)^2)), thus S_i/sqrt(n) is the
            # RMS of cosines between x axes and v_i. If the second smallest singular
            # value corresponds to an angle error less than 10° (cos(80°)=0.17),
            # this is probably a degenerate camera configuration (typical values
            # are around 5° average error for the true vertical). In this case,
            # rather than taking the vector corresponding to the smallest singular
            # value, we project the "up" vector on the plane spanned by the two
            # best singular vectors. We could also just fallback to the "up"
            # solution.
            if S[1] > 0.17 * math.sqrt(poses.shape[0]):
                # regular non-degenerate configuration
                up_vertical = Vh[2, :]
                # It may be pointing up or down. Use "up" to disambiguate the sign.
                up = up_vertical if torch.dot(up_vertical, up) > 0 else -up_vertical
            else:
                # Degenerate configuration: project "up" on the plane spanned by
                # the last two right singular vectors (which are orthogonal to the
                # first). v_0 is a unit vector, no need to divide by its norm when
                # projecting.
                up = up - Vh[0, :] * torch.dot(up, Vh[0, :])
                # re-normalize
                up = up / torch.linalg.norm(up)

        rotation = rotation_matrix(up, torch.Tensor([0, 0, 1]))
        transform = torch.cat([rotation, rotation @ -translation[..., None]], dim=-1)
        oriented_poses = transform @ poses
    elif method == "none":
        transform = torch.eye(4)
        transform[:3, 3] = -translation
        transform = transform[:3, :]
        oriented_poses = transform @ poses
    else:
        raise ValueError(f"Unknown value for method: {method}")

    return oriented_poses, transform


@torch.jit.script
def fisheye624_project(xyz, params):
    """
    Batched implementation of the FisheyeRadTanThinPrism (aka Fisheye624) camera
    model project() function.
    Inputs:
        xyz: BxNx3 tensor of 3D points to be projected
        params: Bx16 tensor of Fisheye624 parameters formatted like this:
                [f_u f_v c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
                or Bx15 tensor of Fisheye624 parameters formatted like this:
                [f c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
    Outputs:
        uv: BxNx2 tensor of 2D projections of xyz in image plane
    Model for fisheye cameras with radial, tangential, and thin-prism distortion.
    This model allows fu != fv.
    Specifically, the model is:
    uvDistorted = [x_r]  + tangentialDistortion  + thinPrismDistortion
                  [y_r]
    proj = diag(fu,fv) * uvDistorted + [cu;cv];
    where:
      a = x/z, b = y/z, r = (a^2+b^2)^(1/2)
      th = atan(r)
      cosPhi = a/r, sinPhi = b/r
      [x_r]  = (th+ k0 * th^3 + k1* th^5 + ...) [cosPhi]
      [y_r]                                     [sinPhi]
      the number of terms in the series is determined by the template parameter numK.
      tangentialDistortion = [(2 x_r^2 + rd^2)*p_0 + 2*x_r*y_r*p_1]
                             [(2 y_r^2 + rd^2)*p_1 + 2*x_r*y_r*p_0]
      where rd^2 = x_r^2 + y_r^2
      thinPrismDistortion = [s0 * rd^2 + s1 rd^4]
                            [s2 * rd^2 + s3 rd^4]
    Author: Daniel DeTone ([email protected])
    """

    assert xyz.ndim == 3
    assert params.ndim == 2
    assert params.shape[-1] == 16 or params.shape[-1] == 15, "This model allows fx != fy"
    eps = 1e-9
    B, N = xyz.shape[0], xyz.shape[1]

    # Radial correction.
    z = xyz[:, :, 2].reshape(B, N, 1)
    z = torch.where(torch.abs(z) < eps, eps * torch.sign(z), z)
    ab = xyz[:, :, :2] / z
    r = torch.norm(ab, dim=-1, p=2, keepdim=True)
    th = torch.atan(r)
    th_divr = torch.where(r < eps, torch.ones_like(ab), ab / r)
    th_k = th.reshape(B, N, 1).clone()
    for i in range(6):
        th_k = th_k + params[:, -12 + i].reshape(B, 1, 1) * torch.pow(th, 3 + i * 2)
    xr_yr = th_k * th_divr
    uv_dist = xr_yr

    # Tangential correction.
    p0 = params[:, -6].reshape(B, 1)
    p1 = params[:, -5].reshape(B, 1)
    xr = xr_yr[:, :, 0].reshape(B, N)
    yr = xr_yr[:, :, 1].reshape(B, N)
    xr_yr_sq = torch.square(xr_yr)
    xr_sq = xr_yr_sq[:, :, 0].reshape(B, N)
    yr_sq = xr_yr_sq[:, :, 1].reshape(B, N)
    rd_sq = xr_sq + yr_sq
    uv_dist_tu = uv_dist[:, :, 0] + ((2.0 * xr_sq + rd_sq) * p0 + 2.0 * xr * yr * p1)
    uv_dist_tv = uv_dist[:, :, 1] + ((2.0 * yr_sq + rd_sq) * p1 + 2.0 * xr * yr * p0)
    uv_dist = torch.stack([uv_dist_tu, uv_dist_tv], dim=-1)  # Avoids in-place complaint.

    # Thin Prism correction.
    s0 = params[:, -4].reshape(B, 1)
    s1 = params[:, -3].reshape(B, 1)
    s2 = params[:, -2].reshape(B, 1)
    s3 = params[:, -1].reshape(B, 1)
    rd_4 = torch.square(rd_sq)
    uv_dist[:, :, 0] = uv_dist[:, :, 0] + (s0 * rd_sq + s1 * rd_4)
    uv_dist[:, :, 1] = uv_dist[:, :, 1] + (s2 * rd_sq + s3 * rd_4)

    # Finally, apply standard terms: focal length and camera centers.
    if params.shape[-1] == 15:
        fx_fy = params[:, 0].reshape(B, 1, 1)
        cx_cy = params[:, 1:3].reshape(B, 1, 2)
    else:
        fx_fy = params[:, 0:2].reshape(B, 1, 2)
        cx_cy = params[:, 2:4].reshape(B, 1, 2)
    result = uv_dist * fx_fy + cx_cy

    return result


# Core implementation of fisheye 624 unprojection. More details are documented here:
# https://facebookresearch.github.io/projectaria_tools/docs/tech_insights/camera_intrinsic_models#the-fisheye62-model
@torch.jit.script
def fisheye624_unproject_helper(uv, params, max_iters: int = 5):
    """
    Batched implementation of the FisheyeRadTanThinPrism (aka Fisheye624) camera
    model. There is no analytical solution for the inverse of the project()
    function so this solves an optimization problem using Newton's method to get
    the inverse.
    Inputs:
        uv: BxNx2 tensor of 2D pixels to be unprojected
        params: Bx16 tensor of Fisheye624 parameters formatted like this:
                [f_u f_v c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
                or Bx15 tensor of Fisheye624 parameters formatted like this:
                [f c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
    Outputs:
        xyz: BxNx3 tensor of 3D rays of uv points with z = 1.
    Model for fisheye cameras with radial, tangential, and thin-prism distortion.
    This model assumes fu=fv. This unproject function holds that:
    X = unproject(project(X))     [for X=(x,y,z) in R^3, z>0]
    and
    x = project(unproject(s*x))   [for s!=0 and x=(u,v) in R^2]
    Author: Daniel DeTone ([email protected])
    """

    assert uv.ndim == 3, "Expected batched input shaped BxNx3"
    assert params.ndim == 2
    assert params.shape[-1] == 16 or params.shape[-1] == 15, "This model allows fx != fy"
    eps = 1e-6
    B, N = uv.shape[0], uv.shape[1]

    if params.shape[-1] == 15:
        fx_fy = params[:, 0].reshape(B, 1, 1)
        cx_cy = params[:, 1:3].reshape(B, 1, 2)
    else:
        fx_fy = params[:, 0:2].reshape(B, 1, 2)
        cx_cy = params[:, 2:4].reshape(B, 1, 2)

    uv_dist = (uv - cx_cy) / fx_fy

    # Compute xr_yr using Newton's method.
    xr_yr = uv_dist.clone()  # Initial guess.
    for _ in range(max_iters):
        uv_dist_est = xr_yr.clone()
        # Tangential terms.
        p0 = params[:, -6].reshape(B, 1)
        p1 = params[:, -5].reshape(B, 1)
        xr = xr_yr[:, :, 0].reshape(B, N)
        yr = xr_yr[:, :, 1].reshape(B, N)
        xr_yr_sq = torch.square(xr_yr)
        xr_sq = xr_yr_sq[:, :, 0].reshape(B, N)
        yr_sq = xr_yr_sq[:, :, 1].reshape(B, N)
        rd_sq = xr_sq + yr_sq
        uv_dist_est[:, :, 0] = uv_dist_est[:, :, 0] + ((2.0 * xr_sq + rd_sq) * p0 + 2.0 * xr * yr * p1)
        uv_dist_est[:, :, 1] = uv_dist_est[:, :, 1] + ((2.0 * yr_sq + rd_sq) * p1 + 2.0 * xr * yr * p0)
        # Thin Prism terms.
        s0 = params[:, -4].reshape(B, 1)
        s1 = params[:, -3].reshape(B, 1)
        s2 = params[:, -2].reshape(B, 1)
        s3 = params[:, -1].reshape(B, 1)
        rd_4 = torch.square(rd_sq)
        uv_dist_est[:, :, 0] = uv_dist_est[:, :, 0] + (s0 * rd_sq + s1 * rd_4)
        uv_dist_est[:, :, 1] = uv_dist_est[:, :, 1] + (s2 * rd_sq + s3 * rd_4)
        # Compute the derivative of uv_dist w.r.t. xr_yr.
        duv_dist_dxr_yr = uv.new_ones(B, N, 2, 2)
        duv_dist_dxr_yr[:, :, 0, 0] = 1.0 + 6.0 * xr_yr[:, :, 0] * p0 + 2.0 * xr_yr[:, :, 1] * p1
        offdiag = 2.0 * (xr_yr[:, :, 0] * p1 + xr_yr[:, :, 1] * p0)
        duv_dist_dxr_yr[:, :, 0, 1] = offdiag
        duv_dist_dxr_yr[:, :, 1, 0] = offdiag
        duv_dist_dxr_yr[:, :, 1, 1] = 1.0 + 6.0 * xr_yr[:, :, 1] * p1 + 2.0 * xr_yr[:, :, 0] * p0
        xr_yr_sq_norm = xr_yr_sq[:, :, 0] + xr_yr_sq[:, :, 1]
        temp1 = 2.0 * (s0 + 2.0 * s1 * xr_yr_sq_norm)
        duv_dist_dxr_yr[:, :, 0, 0] = duv_dist_dxr_yr[:, :, 0, 0] + (xr_yr[:, :, 0] * temp1)
        duv_dist_dxr_yr[:, :, 0, 1] = duv_dist_dxr_yr[:, :, 0, 1] + (xr_yr[:, :, 1] * temp1)
        temp2 = 2.0 * (s2 + 2.0 * s3 * xr_yr_sq_norm)
        duv_dist_dxr_yr[:, :, 1, 0] = duv_dist_dxr_yr[:, :, 1, 0] + (xr_yr[:, :, 0] * temp2)
        duv_dist_dxr_yr[:, :, 1, 1] = duv_dist_dxr_yr[:, :, 1, 1] + (xr_yr[:, :, 1] * temp2)
        # Compute 2x2 inverse manually here since torch.inverse() is very slow.
        # Because this is slow: inv = duv_dist_dxr_yr.inverse()
        # About a 10x reduction in speed with above line.
        mat = duv_dist_dxr_yr.reshape(-1, 2, 2)
        a = mat[:, 0, 0].reshape(-1, 1, 1)
        b = mat[:, 0, 1].reshape(-1, 1, 1)
        c = mat[:, 1, 0].reshape(-1, 1, 1)
        d = mat[:, 1, 1].reshape(-1, 1, 1)
        det = 1.0 / ((a * d) - (b * c))
        top = torch.cat([d, -b], dim=2)
        bot = torch.cat([-c, a], dim=2)
        inv = det * torch.cat([top, bot], dim=1)
        inv = inv.reshape(B, N, 2, 2)
        # Manually compute 2x2 @ 2x1 matrix multiply.
        # Because this is slow: step = (inv @ (uv_dist - uv_dist_est)[..., None])[..., 0]
        diff = uv_dist - uv_dist_est
        a = inv[:, :, 0, 0]
        b = inv[:, :, 0, 1]
        c = inv[:, :, 1, 0]
        d = inv[:, :, 1, 1]
        e = diff[:, :, 0]
        f = diff[:, :, 1]
        step = torch.stack([a * e + b * f, c * e + d * f], dim=-1)
        # Newton step.
        xr_yr = xr_yr + step

    # Compute theta using Newton's method.
    xr_yr_norm = xr_yr.norm(p=2, dim=2).reshape(B, N, 1)
    th = xr_yr_norm.clone()
    for _ in range(max_iters):
        th_radial = uv.new_ones(B, N, 1)
        dthd_th = uv.new_ones(B, N, 1)
        for k in range(6):
            r_k = params[:, -12 + k].reshape(B, 1, 1)
            th_radial = th_radial + (r_k * torch.pow(th, 2 + k * 2))
            dthd_th = dthd_th + ((3.0 + 2.0 * k) * r_k * torch.pow(th, 2 + k * 2))
        th_radial = th_radial * th
        step = (xr_yr_norm - th_radial) / dthd_th
        # handle dthd_th close to 0.
        step = torch.where(dthd_th.abs() > eps, step, torch.sign(step) * eps * 10.0)
        th = th + step
    # Compute the ray direction using theta and xr_yr.
    close_to_zero = torch.logical_and(th.abs() < eps, xr_yr_norm.abs() < eps)
    ray_dir = torch.where(close_to_zero, xr_yr, torch.tan(th) / xr_yr_norm * xr_yr)
    ray = torch.cat([ray_dir, uv.new_ones(B, N, 1)], dim=2)
    return ray


# unproject 2D point to 3D with fisheye624 model
def fisheye624_unproject(coords: torch.Tensor, distortion_params: torch.Tensor) -> torch.Tensor:
    dirs = fisheye624_unproject_helper(coords.unsqueeze(0), distortion_params[0].unsqueeze(0))
    # correct for camera space differences:
    dirs[..., 1] = -dirs[..., 1]
    dirs[..., 2] = -dirs[..., 2]
    return dirs