Spaces:
Runtime error
Runtime error
File size: 47,971 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 |
'''
Common camera utilities
'''
import math
import numpy as np
import torch
import torch.nn as nn
from pytorch3d.renderer import PerspectiveCameras
from pytorch3d.renderer.cameras import look_at_view_transform
from pytorch3d.renderer.implicit.raysampling import _xy_to_ray_bundle
class RelativeCameraLoader(nn.Module):
def __init__(self,
query_batch_size=1,
rand_query=True,
relative=True,
center_at_origin=False,
):
super().__init__()
self.query_batch_size = query_batch_size
self.rand_query = rand_query
self.relative = relative
self.center_at_origin = center_at_origin
def plot_cameras(self, cameras_1, cameras_2):
'''
Helper function to plot cameras
Args:
cameras_1 (PyTorch3D camera): cameras object to plot
cameras_2 (PyTorch3D camera): cameras object to plot
'''
from pytorch3d.vis.plotly_vis import AxisArgs, plot_batch_individually, plot_scene
import plotly.graph_objects as go
plotlyplot = plot_scene(
{
'scene_batch': {
'cameras': cameras_1.to('cpu'),
'rel_cameras': cameras_2.to('cpu'),
}
},
camera_scale=.5,#0.05,
pointcloud_max_points=10000,
pointcloud_marker_size=1.0,
raybundle_max_rays=100
)
plotlyplot.show()
def concat_cameras(self, camera_list):
'''
Returns a concatenation of a list of cameras
Args:
camera_list (List[PyTorch3D camera]): a list of PyTorch3D cameras
'''
R_list, T_list, f_list, c_list, size_list = [], [], [], [], []
for cameras in camera_list:
R_list.append(cameras.R)
T_list.append(cameras.T)
f_list.append(cameras.focal_length)
c_list.append(cameras.principal_point)
size_list.append(cameras.image_size)
camera_slice = PerspectiveCameras(
R = torch.cat(R_list),
T = torch.cat(T_list),
focal_length = torch.cat(f_list),
principal_point = torch.cat(c_list),
image_size = torch.cat(size_list),
device = camera_list[0].device,
)
return camera_slice
def get_camera_slice(self, scene_cameras, indices):
'''
Return a subset of cameras from a super set given indices
Args:
scene_cameras (PyTorch3D Camera): cameras object
indices (tensor or List): a flat list or tensor of indices
Returns:
camera_slice (PyTorch3D Camera) - cameras subset
'''
camera_slice = PerspectiveCameras(
R = scene_cameras.R[indices],
T = scene_cameras.T[indices],
focal_length = scene_cameras.focal_length[indices],
principal_point = scene_cameras.principal_point[indices],
image_size = scene_cameras.image_size[indices],
device = scene_cameras.device,
)
return camera_slice
def get_relative_camera(self, scene_cameras:PerspectiveCameras, query_idx, center_at_origin=False):
"""
Transform context cameras relative to a base query camera
Args:
scene_cameras (PyTorch3D Camera): cameras object
query_idx (tensor or List): a length 1 list defining query idx
Returns:
cams_relative (PyTorch3D Camera): cameras object relative to query camera
"""
query_camera = self.get_camera_slice(scene_cameras, query_idx)
query_world2view = query_camera.get_world_to_view_transform()
all_world2view = scene_cameras.get_world_to_view_transform()
if center_at_origin:
identity_cam = PerspectiveCameras(device=scene_cameras.device, R=query_camera.R, T=query_camera.T)
else:
T = torch.zeros((1, 3))
identity_cam = PerspectiveCameras(device=scene_cameras.device, R=query_camera.R, T=T)
identity_world2view = identity_cam.get_world_to_view_transform()
# compose the relative transformation as g_i^{-1} g_j
relative_world2view = identity_world2view.inverse().compose(all_world2view)
# generate a camera from the relative transform
relative_matrix = relative_world2view.get_matrix()
cams_relative = PerspectiveCameras(
R = relative_matrix[:, :3, :3],
T = relative_matrix[:, 3, :3],
focal_length = scene_cameras.focal_length,
principal_point = scene_cameras.principal_point,
image_size = scene_cameras.image_size,
device = scene_cameras.device,
)
return cams_relative
def forward(self, scene_cameras, scene_rgb=None, scene_masks=None, query_idx=None, context_size=3, context_idx=None, return_context=False):
'''
Return a sampled batch of query and context cameras (used in training)
Args:
scene_cameras (PyTorch3D Camera): a batch of PyTorch3D cameras
scene_rgb (Tensor): a batch of rgb
scene_masks (Tensor): a batch of masks (optional)
query_idx (List or Tensor): desired query idx (optional)
context_size (int): number of views for context
Returns:
query_cameras, query_rgb, query_masks: random query view
context_cameras, context_rgb, context_masks: context views
'''
if query_idx is None:
query_idx = [0]
if self.rand_query:
rand = torch.randperm(len(scene_cameras))
query_idx = rand[:1]
if context_idx is None:
rand = torch.randperm(len(scene_cameras))
context_idx = rand[:context_size]
if self.relative:
rel_cameras = self.get_relative_camera(scene_cameras, query_idx, center_at_origin=self.center_at_origin)
else:
rel_cameras = scene_cameras
query_cameras = self.get_camera_slice(rel_cameras, query_idx)
query_rgb = None
if scene_rgb is not None:
query_rgb = scene_rgb[query_idx]
query_masks = None
if scene_masks is not None:
query_masks = scene_masks[query_idx]
context_cameras = self.get_camera_slice(rel_cameras, context_idx)
context_rgb = None
if scene_rgb is not None:
context_rgb = scene_rgb[context_idx]
context_masks = None
if scene_masks is not None:
context_masks = scene_masks[context_idx]
if return_context:
return query_cameras, query_rgb, query_masks, context_cameras, context_rgb, context_masks, context_idx
return query_cameras, query_rgb, query_masks, context_cameras, context_rgb, context_masks
def get_interpolated_path(cameras: PerspectiveCameras, n=50, method='circle', theta_offset_max=0.0):
'''
Given a camera object containing a set of cameras, fit a circle and get
interpolated cameras
Args:
cameras (PyTorch3D Camera): input camera object
n (int): length of cameras in new path
method (str): 'circle'
theta_offset_max (int): max camera jitter in radians
Returns:
path_cameras (PyTorch3D Camera): interpolated cameras
'''
device = cameras.device
cameras = cameras.cpu()
if method == 'circle':
#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#@ Fit plane
P = cameras.get_camera_center().cpu()
P_mean = P.mean(axis=0)
P_centered = P - P_mean
U,s,V = torch.linalg.svd(P_centered)
normal = V[2,:]
if (normal*2 - P_mean).norm() < (normal - P_mean).norm():
normal = - normal
d = -torch.dot(P_mean, normal) # d = -<p,n>
#@ Project pts to plane
P_xy = rodrigues_rot(P_centered, normal, torch.tensor([0.0,0.0,1.0]))
#@ Fit circle in 2D
xc, yc, r = fit_circle_2d(P_xy[:,0], P_xy[:,1])
t = torch.linspace(0, 2*math.pi, 100)
xx = xc + r*torch.cos(t)
yy = yc + r*torch.sin(t)
#@ Project circle to 3D
C = rodrigues_rot(torch.tensor([xc,yc,0.0]), torch.tensor([0.0,0.0,1.0]), normal) + P_mean
C = C.flatten()
#@ Get pts n 3D
t = torch.linspace(0, 2*math.pi, n)
u = P[0] - C
new_camera_centers = generate_circle_by_vectors(t, C, r, normal, u)
#@ OPTIONAL THETA OFFSET
if theta_offset_max > 0.0:
aug_theta = (torch.rand((new_camera_centers.shape[0])) * (2*theta_offset_max)) - theta_offset_max
new_camera_centers = rodrigues_rot2(new_camera_centers, normal, aug_theta)
#@ Get camera look at
new_camera_look_at = get_nearest_centroid(cameras)
#@ Get R T
up_vec = -normal
R, T = look_at_view_transform(eye=new_camera_centers, at=new_camera_look_at.unsqueeze(0), up=up_vec.unsqueeze(0), device=cameras.device)
else:
raise NotImplementedError
c = (cameras.principal_point).mean(dim=0, keepdim=True).expand(R.shape[0],-1)
f = (cameras.focal_length).mean(dim=0, keepdim=True).expand(R.shape[0],-1)
image_size = cameras.image_size[:1].expand(R.shape[0],-1)
path_cameras = PerspectiveCameras(R=R,T=T,focal_length=f,principal_point=c,image_size=image_size, device=device)
cameras = cameras.to(device)
return path_cameras
def np_normalize(vec, axis=-1):
vec = vec / (np.linalg.norm(vec, axis=axis, keepdims=True) + 1e-9)
return vec
#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# Generate points on circle
# P(t) = r*cos(t)*u + r*sin(t)*(n x u) + C
#-------------------------------------------------------------------------------
def generate_circle_by_vectors(t, C, r, n, u):
n = n/torch.linalg.norm(n)
u = u/torch.linalg.norm(u)
P_circle = r*torch.cos(t)[:,None]*u + r*torch.sin(t)[:,None]*torch.cross(n,u) + C
return P_circle
#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# FIT CIRCLE 2D
# - Find center [xc, yc] and radius r of circle fitting to set of 2D points
# - Optionally specify weights for points
#
# - Implicit circle function:
# (x-xc)^2 + (y-yc)^2 = r^2
# (2*xc)*x + (2*yc)*y + (r^2-xc^2-yc^2) = x^2+y^2
# c[0]*x + c[1]*y + c[2] = x^2+y^2
#
# - Solution by method of least squares:
# A*c = b, c' = argmin(||A*c - b||^2)
# A = [x y 1], b = [x^2+y^2]
#-------------------------------------------------------------------------------
def fit_circle_2d(x, y, w=[]):
A = torch.stack([x, y, torch.ones(len(x))]).T
b = x**2 + y**2
# Modify A,b for weighted least squares
if len(w) == len(x):
W = torch.diag(w)
A = torch.dot(W,A)
b = torch.dot(W,b)
# Solve by method of least squares
c = torch.linalg.lstsq(A,b,rcond=None)[0]
# Get circle parameters from solution c
xc = c[0]/2
yc = c[1]/2
r = torch.sqrt(c[2] + xc**2 + yc**2)
return xc, yc, r
#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# RODRIGUES ROTATION
# - Rotate given points based on a starting and ending vector
# - Axis k and angle of rotation theta given by vectors n0,n1
# P_rot = P*cos(theta) + (k x P)*sin(theta) + k*<k,P>*(1-cos(theta))
#-------------------------------------------------------------------------------
def rodrigues_rot(P, n0, n1):
# If P is only 1d array (coords of single point), fix it to be matrix
if P.ndim == 1:
P = P[None,...]
# Get vector of rotation k and angle theta
n0 = n0/torch.linalg.norm(n0)
n1 = n1/torch.linalg.norm(n1)
k = torch.cross(n0,n1)
k = k/torch.linalg.norm(k)
theta = torch.arccos(torch.dot(n0,n1))
# Compute rotated points
P_rot = torch.zeros((len(P),3))
for i in range(len(P)):
P_rot[i] = P[i]*torch.cos(theta) + torch.cross(k,P[i])*torch.sin(theta) + k*torch.dot(k,P[i])*(1-torch.cos(theta))
return P_rot
def rodrigues_rot2(P, n1, theta):
'''
Rotate points P wrt axis k by theta radians
'''
# If P is only 1d array (coords of single point), fix it to be matrix
if P.ndim == 1:
P = P[None,...]
k = torch.cross(P, n1.unsqueeze(0))
k = k/torch.linalg.norm(k)
# Compute rotated points
P_rot = torch.zeros((len(P),3))
for i in range(len(P)):
P_rot[i] = P[i]*torch.cos(theta[i]) + torch.cross(k[i],P[i])*torch.sin(theta[i]) + k[i]*torch.dot(k[i],P[i])*(1-torch.cos(theta[i]))
return P_rot
#@ https://meshlogic.github.io/posts/jupyter/curve-fitting/fitting-a-circle-to-cluster-of-3d-points/
#-------------------------------------------------------------------------------
# ANGLE BETWEEN
# - Get angle between vectors u,v with sign based on plane with unit normal n
#-------------------------------------------------------------------------------
def angle_between(u, v, n=None):
if n is None:
return torch.arctan2(torch.linalg.norm(torch.cross(u,v)), torch.dot(u,v))
else:
return torch.arctan2(torch.dot(n,torch.cross(u,v)), torch.dot(u,v))
#@ https://www.crewes.org/Documents/ResearchReports/2010/CRR201032.pdf
def get_nearest_centroid(cameras: PerspectiveCameras):
'''
Given PyTorch3D cameras, find the nearest point along their principal ray
'''
#@ GET CAMERA CENTERS AND DIRECTIONS
camera_centers = cameras.get_camera_center()
c_mean = (cameras.principal_point).mean(dim=0)
xy_grid = c_mean.unsqueeze(0).unsqueeze(0)
ray_vis = _xy_to_ray_bundle(cameras, xy_grid.expand(len(cameras),-1,-1), 1.0, 15.0, 20, True)
camera_directions = ray_vis.directions
#@ CONSTRUCT MATRICIES
A = torch.zeros((3*len(cameras)), len(cameras)+3)
b = torch.zeros((3*len(cameras), 1))
A[:,:3] = torch.eye(3).repeat(len(cameras),1)
for ci in range(len(camera_directions)):
A[3*ci:3*ci+3, ci+3] = -camera_directions[ci]
b[3*ci:3*ci+3, 0] = camera_centers[ci]
#' A (3*N, 3*N+3) b (3*N, 1)
#@ SVD
U, s, VT = torch.linalg.svd(A)
Sinv = torch.diag(1/s)
if len(s) < 3*len(cameras):
Sinv = torch.cat((Sinv, torch.zeros((Sinv.shape[0], 3*len(cameras) - Sinv.shape[1]), device=Sinv.device)), dim=1)
x = torch.matmul(VT.T, torch.matmul(Sinv,torch.matmul(U.T, b)))
centroid = x[:3,0]
return centroid
def get_angles(target_camera: PerspectiveCameras, context_cameras: PerspectiveCameras, centroid=None):
'''
Get angles between cameras wrt a centroid
Args:
target_camera (Pytorch3D Camera): a camera object with a single camera
context_cameras (PyTorch3D Camera): a camera object
Returns:
theta_deg (Tensor): a tensor containing angles in degrees
'''
a1 = target_camera.get_camera_center()
b1 = context_cameras.get_camera_center()
a = a1 - centroid.unsqueeze(0)
a = a.expand(len(context_cameras), -1)
b = b1 - centroid.unsqueeze(0)
ab_dot = (a*b).sum(dim=-1)
theta = torch.acos((ab_dot)/(torch.linalg.norm(a, dim=-1) * torch.linalg.norm(b, dim=-1)))
theta_deg = theta * 180 / math.pi
return theta_deg
import math
from typing import List, Literal, Optional, Tuple
import numpy as np
import torch
from jaxtyping import Float
from numpy.typing import NDArray
from torch import Tensor
_EPS = np.finfo(float).eps * 4.0
def unit_vector(data: NDArray, axis: Optional[int] = None) -> np.ndarray:
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
Args:
axis: the axis along which to normalize into unit vector
out: where to write out the data to. If None, returns a new np ndarray
"""
data = np.array(data, dtype=np.float64, copy=True)
if data.ndim == 1:
data /= math.sqrt(np.dot(data, data))
return data
length = np.atleast_1d(np.sum(data * data, axis))
np.sqrt(length, length)
if axis is not None:
length = np.expand_dims(length, axis)
data /= length
return data
def quaternion_from_matrix(matrix: NDArray, isprecise: bool = False) -> np.ndarray:
"""Return quaternion from rotation matrix.
Args:
matrix: rotation matrix to obtain quaternion
isprecise: if True, input matrix is assumed to be precise rotation matrix and a faster algorithm is used.
"""
M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
if isprecise:
q = np.empty((4,))
t = np.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 1, 2, 3
if M[1, 1] > M[0, 0]:
i, j, k = 2, 3, 1
if M[2, 2] > M[i, i]:
i, j, k = 3, 1, 2
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = [
[m00 - m11 - m22, 0.0, 0.0, 0.0],
[m01 + m10, m11 - m00 - m22, 0.0, 0.0],
[m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
[m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22],
]
K = np.array(K)
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[np.array([3, 0, 1, 2]), np.argmax(w)]
if q[0] < 0.0:
np.negative(q, q)
return q
def quaternion_slerp(
quat0: NDArray, quat1: NDArray, fraction: float, spin: int = 0, shortestpath: bool = True
) -> np.ndarray:
"""Return spherical linear interpolation between two quaternions.
Args:
quat0: first quaternion
quat1: second quaternion
fraction: how much to interpolate between quat0 vs quat1 (if 0, closer to quat0; if 1, closer to quat1)
spin: how much of an additional spin to place on the interpolation
shortestpath: whether to return the short or long path to rotation
"""
q0 = unit_vector(quat0[:4])
q1 = unit_vector(quat1[:4])
if q0 is None or q1 is None:
raise ValueError("Input quaternions invalid.")
if fraction == 0.0:
return q0
if fraction == 1.0:
return q1
d = np.dot(q0, q1)
if abs(abs(d) - 1.0) < _EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
np.negative(q1, q1)
angle = math.acos(d) + spin * math.pi
if abs(angle) < _EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0
def quaternion_matrix(quaternion: NDArray) -> np.ndarray:
"""Return homogeneous rotation matrix from quaternion.
Args:
quaternion: value to convert to matrix
"""
q = np.array(quaternion, dtype=np.float64, copy=True)
n = np.dot(q, q)
if n < _EPS:
return np.identity(4)
q *= math.sqrt(2.0 / n)
q = np.outer(q, q)
return np.array(
[
[1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0], 0.0],
[q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0], 0.0],
[q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0],
[0.0, 0.0, 0.0, 1.0],
]
)
def get_interpolated_poses(pose_a: NDArray, pose_b: NDArray, steps: int = 10) -> List[float]:
"""Return interpolation of poses with specified number of steps.
Args:
pose_a: first pose
pose_b: second pose
steps: number of steps the interpolated pose path should contain
"""
quat_a = quaternion_from_matrix(pose_a[:3, :3])
quat_b = quaternion_from_matrix(pose_b[:3, :3])
ts = np.linspace(0, 1, steps)
quats = [quaternion_slerp(quat_a, quat_b, t) for t in ts]
trans = [(1 - t) * pose_a[:3, 3] + t * pose_b[:3, 3] for t in ts]
poses_ab = []
for quat, tran in zip(quats, trans):
pose = np.identity(4)
pose[:3, :3] = quaternion_matrix(quat)[:3, :3]
pose[:3, 3] = tran
poses_ab.append(pose[:3])
return poses_ab
def get_interpolated_k(
k_a: Float[Tensor, "3 3"], k_b: Float[Tensor, "3 3"], steps: int = 10
) -> List[Float[Tensor, "3 4"]]:
"""
Returns interpolated path between two camera poses with specified number of steps.
Args:
k_a: camera matrix 1
k_b: camera matrix 2
steps: number of steps the interpolated pose path should contain
Returns:
List of interpolated camera poses
"""
Ks: List[Float[Tensor, "3 3"]] = []
ts = np.linspace(0, 1, steps)
for t in ts:
new_k = k_a * (1.0 - t) + k_b * t
Ks.append(new_k)
return Ks
def get_ordered_poses_and_k(
poses: Float[Tensor, "num_poses 3 4"],
Ks: Float[Tensor, "num_poses 3 3"],
) -> Tuple[Float[Tensor, "num_poses 3 4"], Float[Tensor, "num_poses 3 3"]]:
"""
Returns ordered poses and intrinsics by euclidian distance between poses.
Args:
poses: list of camera poses
Ks: list of camera intrinsics
Returns:
tuple of ordered poses and intrinsics
"""
poses_num = len(poses)
ordered_poses = torch.unsqueeze(poses[0], 0)
ordered_ks = torch.unsqueeze(Ks[0], 0)
# remove the first pose from poses
poses = poses[1:]
Ks = Ks[1:]
for _ in range(poses_num - 1):
distances = torch.norm(ordered_poses[-1][:, 3] - poses[:, :, 3], dim=1)
idx = torch.argmin(distances)
ordered_poses = torch.cat((ordered_poses, torch.unsqueeze(poses[idx], 0)), dim=0)
ordered_ks = torch.cat((ordered_ks, torch.unsqueeze(Ks[idx], 0)), dim=0)
poses = torch.cat((poses[0:idx], poses[idx + 1 :]), dim=0)
Ks = torch.cat((Ks[0:idx], Ks[idx + 1 :]), dim=0)
return ordered_poses, ordered_ks
def get_interpolated_poses_many(
poses: Float[Tensor, "num_poses 3 4"],
Ks: Float[Tensor, "num_poses 3 3"],
steps_per_transition: int = 10,
order_poses: bool = False,
) -> Tuple[Float[Tensor, "num_poses 3 4"], Float[Tensor, "num_poses 3 3"]]:
"""Return interpolated poses for many camera poses.
Args:
poses: list of camera poses
Ks: list of camera intrinsics
steps_per_transition: number of steps per transition
order_poses: whether to order poses by euclidian distance
Returns:
tuple of new poses and intrinsics
"""
traj = []
k_interp = []
if order_poses:
poses, Ks = get_ordered_poses_and_k(poses, Ks)
for idx in range(poses.shape[0] - 1):
pose_a = poses[idx].cpu().numpy()
pose_b = poses[idx + 1].cpu().numpy()
poses_ab = get_interpolated_poses(pose_a, pose_b, steps=steps_per_transition)
traj += poses_ab
k_interp += get_interpolated_k(Ks[idx], Ks[idx + 1], steps=steps_per_transition)
traj = np.stack(traj, axis=0)
k_interp = torch.stack(k_interp, dim=0)
return torch.tensor(traj, dtype=torch.float32), torch.tensor(k_interp, dtype=torch.float32)
def normalize(x: torch.Tensor) -> Float[Tensor, "*batch"]:
"""Returns a normalized vector."""
return x / torch.linalg.norm(x)
def normalize_with_norm(x: torch.Tensor, dim: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Normalize tensor along axis and return normalized value with norms.
Args:
x: tensor to normalize.
dim: axis along which to normalize.
Returns:
Tuple of normalized tensor and corresponding norm.
"""
norm = torch.maximum(torch.linalg.vector_norm(x, dim=dim, keepdims=True), torch.tensor([_EPS]).to(x))
return x / norm, norm
def viewmatrix(lookat: torch.Tensor, up: torch.Tensor, pos: torch.Tensor) -> Float[Tensor, "*batch"]:
"""Returns a camera transformation matrix.
Args:
lookat: The direction the camera is looking.
up: The upward direction of the camera.
pos: The position of the camera.
Returns:
A camera transformation matrix.
"""
vec2 = normalize(lookat)
vec1_avg = normalize(up)
vec0 = normalize(torch.cross(vec1_avg, vec2))
vec1 = normalize(torch.cross(vec2, vec0))
m = torch.stack([vec0, vec1, vec2, pos], 1)
return m
def get_distortion_params(
k1: float = 0.0,
k2: float = 0.0,
k3: float = 0.0,
k4: float = 0.0,
p1: float = 0.0,
p2: float = 0.0,
) -> Float[Tensor, "*batch"]:
"""Returns a distortion parameters matrix.
Args:
k1: The first radial distortion parameter.
k2: The second radial distortion parameter.
k3: The third radial distortion parameter.
k4: The fourth radial distortion parameter.
p1: The first tangential distortion parameter.
p2: The second tangential distortion parameter.
Returns:
torch.Tensor: A distortion parameters matrix.
"""
return torch.Tensor([k1, k2, k3, k4, p1, p2])
def _compute_residual_and_jacobian(
x: torch.Tensor,
y: torch.Tensor,
xd: torch.Tensor,
yd: torch.Tensor,
distortion_params: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Auxiliary function of radial_and_tangential_undistort() that computes residuals and jacobians.
Adapted from MultiNeRF:
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L427-L474
Args:
x: The updated x coordinates.
y: The updated y coordinates.
xd: The distorted x coordinates.
yd: The distorted y coordinates.
distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].
Returns:
The residuals (fx, fy) and jacobians (fx_x, fx_y, fy_x, fy_y).
"""
k1 = distortion_params[..., 0]
k2 = distortion_params[..., 1]
k3 = distortion_params[..., 2]
k4 = distortion_params[..., 3]
p1 = distortion_params[..., 4]
p2 = distortion_params[..., 5]
# let r(x, y) = x^2 + y^2;
# d(x, y) = 1 + k1 * r(x, y) + k2 * r(x, y) ^2 + k3 * r(x, y)^3 +
# k4 * r(x, y)^4;
r = x * x + y * y
d = 1.0 + r * (k1 + r * (k2 + r * (k3 + r * k4)))
# The perfect projection is:
# xd = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2);
# yd = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2);
#
# Let's define
#
# fx(x, y) = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2) - xd;
# fy(x, y) = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2) - yd;
#
# We are looking for a solution that satisfies
# fx(x, y) = fy(x, y) = 0;
fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd
# Compute derivative of d over [x, y]
d_r = k1 + r * (2.0 * k2 + r * (3.0 * k3 + r * 4.0 * k4))
d_x = 2.0 * x * d_r
d_y = 2.0 * y * d_r
# Compute derivative of fx over x and y.
fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y
# Compute derivative of fy over x and y.
fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y
return fx, fy, fx_x, fx_y, fy_x, fy_y
# @torch_compile(dynamic=True, mode="reduce-overhead", backend="eager")
def radial_and_tangential_undistort(
coords: torch.Tensor,
distortion_params: torch.Tensor,
eps: float = 1e-3,
max_iterations: int = 10,
) -> torch.Tensor:
"""Computes undistorted coords given opencv distortion parameters.
Adapted from MultiNeRF
https://github.com/google-research/multinerf/blob/b02228160d3179300c7d499dca28cb9ca3677f32/internal/camera_utils.py#L477-L509
Args:
coords: The distorted coordinates.
distortion_params: The distortion parameters [k1, k2, k3, k4, p1, p2].
eps: The epsilon for the convergence.
max_iterations: The maximum number of iterations to perform.
Returns:
The undistorted coordinates.
"""
# Initialize from the distorted point.
x = coords[..., 0]
y = coords[..., 1]
for _ in range(max_iterations):
fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
x=x, y=y, xd=coords[..., 0], yd=coords[..., 1], distortion_params=distortion_params
)
denominator = fy_x * fx_y - fx_x * fy_y
x_numerator = fx * fy_y - fy * fx_y
y_numerator = fy * fx_x - fx * fy_x
step_x = torch.where(torch.abs(denominator) > eps, x_numerator / denominator, torch.zeros_like(denominator))
step_y = torch.where(torch.abs(denominator) > eps, y_numerator / denominator, torch.zeros_like(denominator))
x = x + step_x
y = y + step_y
return torch.stack([x, y], dim=-1)
def rotation_matrix(a: Float[Tensor, "3"], b: Float[Tensor, "3"]) -> Float[Tensor, "3 3"]:
"""Compute the rotation matrix that rotates vector a to vector b.
Args:
a: The vector to rotate.
b: The vector to rotate to.
Returns:
The rotation matrix.
"""
a = a / torch.linalg.norm(a)
b = b / torch.linalg.norm(b)
v = torch.cross(a, b)
c = torch.dot(a, b)
# If vectors are exactly opposite, we add a little noise to one of them
if c < -1 + 1e-8:
eps = (torch.rand(3) - 0.5) * 0.01
return rotation_matrix(a + eps, b)
s = torch.linalg.norm(v)
skew_sym_mat = torch.Tensor(
[
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0],
]
)
return torch.eye(3) + skew_sym_mat + skew_sym_mat @ skew_sym_mat * ((1 - c) / (s**2 + 1e-8))
def focus_of_attention(poses: Float[Tensor, "*num_poses 4 4"], initial_focus: Float[Tensor, "3"]) -> Float[Tensor, "3"]:
"""Compute the focus of attention of a set of cameras. Only cameras
that have the focus of attention in front of them are considered.
Args:
poses: The poses to orient.
initial_focus: The 3D point views to decide which cameras are initially activated.
Returns:
The 3D position of the focus of attention.
"""
# References to the same method in third-party code:
# https://github.com/google-research/multinerf/blob/1c8b1c552133cdb2de1c1f3c871b2813f6662265/internal/camera_utils.py#L145
# https://github.com/bmild/nerf/blob/18b8aebda6700ed659cb27a0c348b737a5f6ab60/load_llff.py#L197
active_directions = -poses[:, :3, 2:3]
active_origins = poses[:, :3, 3:4]
# initial value for testing if the focus_pt is in front or behind
focus_pt = initial_focus
# Prune cameras which have the current have the focus_pt behind them.
active = torch.sum(active_directions.squeeze(-1) * (focus_pt - active_origins.squeeze(-1)), dim=-1) > 0
done = False
# We need at least two active cameras, else fallback on the previous solution.
# This may be the "poses" solution if no cameras are active on first iteration, e.g.
# they are in an outward-looking configuration.
while torch.sum(active.int()) > 1 and not done:
active_directions = active_directions[active]
active_origins = active_origins[active]
# https://en.wikipedia.org/wiki/Line–line_intersection#In_more_than_two_dimensions
m = torch.eye(3) - active_directions * torch.transpose(active_directions, -2, -1)
mt_m = torch.transpose(m, -2, -1) @ m
focus_pt = torch.linalg.inv(mt_m.mean(0)) @ (mt_m @ active_origins).mean(0)[:, 0]
active = torch.sum(active_directions.squeeze(-1) * (focus_pt - active_origins.squeeze(-1)), dim=-1) > 0
if active.all():
# the set of active cameras did not change, so we're done.
done = True
return focus_pt
def auto_orient_and_center_poses(
poses: Float[Tensor, "*num_poses 4 4"],
method: Literal["pca", "up", "vertical", "none"] = "up",
center_method: Literal["poses", "focus", "none"] = "poses",
) -> Tuple[Float[Tensor, "*num_poses 3 4"], Float[Tensor, "3 4"]]:
"""Orients and centers the poses.
We provide three methods for orientation:
- pca: Orient the poses so that the principal directions of the camera centers are aligned
with the axes, Z corresponding to the smallest principal component.
This method works well when all of the cameras are in the same plane, for example when
images are taken using a mobile robot.
- up: Orient the poses so that the average up vector is aligned with the z axis.
This method works well when images are not at arbitrary angles.
- vertical: Orient the poses so that the Z 3D direction projects close to the
y axis in images. This method works better if cameras are not all
looking in the same 3D direction, which may happen in camera arrays or in LLFF.
There are two centering methods:
- poses: The poses are centered around the origin.
- focus: The origin is set to the focus of attention of all cameras (the
closest point to cameras optical axes). Recommended for inward-looking
camera configurations.
Args:
poses: The poses to orient.
method: The method to use for orientation.
center_method: The method to use to center the poses.
Returns:
Tuple of the oriented poses and the transform matrix.
"""
origins = poses[..., :3, 3]
mean_origin = torch.mean(origins, dim=0)
translation_diff = origins - mean_origin
if center_method == "poses":
translation = mean_origin
elif center_method == "focus":
translation = focus_of_attention(poses, mean_origin)
elif center_method == "none":
translation = torch.zeros_like(mean_origin)
else:
raise ValueError(f"Unknown value for center_method: {center_method}")
if method == "pca":
_, eigvec = torch.linalg.eigh(translation_diff.T @ translation_diff)
eigvec = torch.flip(eigvec, dims=(-1,))
if torch.linalg.det(eigvec) < 0:
eigvec[:, 2] = -eigvec[:, 2]
transform = torch.cat([eigvec, eigvec @ -translation[..., None]], dim=-1)
oriented_poses = transform @ poses
if oriented_poses.mean(dim=0)[2, 1] < 0:
oriented_poses[:, 1:3] = -1 * oriented_poses[:, 1:3]
elif method in ("up", "vertical"):
up = torch.mean(poses[:, :3, 1], dim=0)
up = up / torch.linalg.norm(up)
if method == "vertical":
# If cameras are not all parallel (e.g. not in an LLFF configuration),
# we can find the 3D direction that most projects vertically in all
# cameras by minimizing ||Xu|| s.t. ||u||=1. This total least squares
# problem is solved by SVD.
x_axis_matrix = poses[:, :3, 0]
_, S, Vh = torch.linalg.svd(x_axis_matrix, full_matrices=False)
# Singular values are S_i=||Xv_i|| for each right singular vector v_i.
# ||S|| = sqrt(n) because lines of X are all unit vectors and the v_i
# are an orthonormal basis.
# ||Xv_i|| = sqrt(sum(dot(x_axis_j,v_i)^2)), thus S_i/sqrt(n) is the
# RMS of cosines between x axes and v_i. If the second smallest singular
# value corresponds to an angle error less than 10° (cos(80°)=0.17),
# this is probably a degenerate camera configuration (typical values
# are around 5° average error for the true vertical). In this case,
# rather than taking the vector corresponding to the smallest singular
# value, we project the "up" vector on the plane spanned by the two
# best singular vectors. We could also just fallback to the "up"
# solution.
if S[1] > 0.17 * math.sqrt(poses.shape[0]):
# regular non-degenerate configuration
up_vertical = Vh[2, :]
# It may be pointing up or down. Use "up" to disambiguate the sign.
up = up_vertical if torch.dot(up_vertical, up) > 0 else -up_vertical
else:
# Degenerate configuration: project "up" on the plane spanned by
# the last two right singular vectors (which are orthogonal to the
# first). v_0 is a unit vector, no need to divide by its norm when
# projecting.
up = up - Vh[0, :] * torch.dot(up, Vh[0, :])
# re-normalize
up = up / torch.linalg.norm(up)
rotation = rotation_matrix(up, torch.Tensor([0, 0, 1]))
transform = torch.cat([rotation, rotation @ -translation[..., None]], dim=-1)
oriented_poses = transform @ poses
elif method == "none":
transform = torch.eye(4)
transform[:3, 3] = -translation
transform = transform[:3, :]
oriented_poses = transform @ poses
else:
raise ValueError(f"Unknown value for method: {method}")
return oriented_poses, transform
@torch.jit.script
def fisheye624_project(xyz, params):
"""
Batched implementation of the FisheyeRadTanThinPrism (aka Fisheye624) camera
model project() function.
Inputs:
xyz: BxNx3 tensor of 3D points to be projected
params: Bx16 tensor of Fisheye624 parameters formatted like this:
[f_u f_v c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
or Bx15 tensor of Fisheye624 parameters formatted like this:
[f c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
Outputs:
uv: BxNx2 tensor of 2D projections of xyz in image plane
Model for fisheye cameras with radial, tangential, and thin-prism distortion.
This model allows fu != fv.
Specifically, the model is:
uvDistorted = [x_r] + tangentialDistortion + thinPrismDistortion
[y_r]
proj = diag(fu,fv) * uvDistorted + [cu;cv];
where:
a = x/z, b = y/z, r = (a^2+b^2)^(1/2)
th = atan(r)
cosPhi = a/r, sinPhi = b/r
[x_r] = (th+ k0 * th^3 + k1* th^5 + ...) [cosPhi]
[y_r] [sinPhi]
the number of terms in the series is determined by the template parameter numK.
tangentialDistortion = [(2 x_r^2 + rd^2)*p_0 + 2*x_r*y_r*p_1]
[(2 y_r^2 + rd^2)*p_1 + 2*x_r*y_r*p_0]
where rd^2 = x_r^2 + y_r^2
thinPrismDistortion = [s0 * rd^2 + s1 rd^4]
[s2 * rd^2 + s3 rd^4]
Author: Daniel DeTone ([email protected])
"""
assert xyz.ndim == 3
assert params.ndim == 2
assert params.shape[-1] == 16 or params.shape[-1] == 15, "This model allows fx != fy"
eps = 1e-9
B, N = xyz.shape[0], xyz.shape[1]
# Radial correction.
z = xyz[:, :, 2].reshape(B, N, 1)
z = torch.where(torch.abs(z) < eps, eps * torch.sign(z), z)
ab = xyz[:, :, :2] / z
r = torch.norm(ab, dim=-1, p=2, keepdim=True)
th = torch.atan(r)
th_divr = torch.where(r < eps, torch.ones_like(ab), ab / r)
th_k = th.reshape(B, N, 1).clone()
for i in range(6):
th_k = th_k + params[:, -12 + i].reshape(B, 1, 1) * torch.pow(th, 3 + i * 2)
xr_yr = th_k * th_divr
uv_dist = xr_yr
# Tangential correction.
p0 = params[:, -6].reshape(B, 1)
p1 = params[:, -5].reshape(B, 1)
xr = xr_yr[:, :, 0].reshape(B, N)
yr = xr_yr[:, :, 1].reshape(B, N)
xr_yr_sq = torch.square(xr_yr)
xr_sq = xr_yr_sq[:, :, 0].reshape(B, N)
yr_sq = xr_yr_sq[:, :, 1].reshape(B, N)
rd_sq = xr_sq + yr_sq
uv_dist_tu = uv_dist[:, :, 0] + ((2.0 * xr_sq + rd_sq) * p0 + 2.0 * xr * yr * p1)
uv_dist_tv = uv_dist[:, :, 1] + ((2.0 * yr_sq + rd_sq) * p1 + 2.0 * xr * yr * p0)
uv_dist = torch.stack([uv_dist_tu, uv_dist_tv], dim=-1) # Avoids in-place complaint.
# Thin Prism correction.
s0 = params[:, -4].reshape(B, 1)
s1 = params[:, -3].reshape(B, 1)
s2 = params[:, -2].reshape(B, 1)
s3 = params[:, -1].reshape(B, 1)
rd_4 = torch.square(rd_sq)
uv_dist[:, :, 0] = uv_dist[:, :, 0] + (s0 * rd_sq + s1 * rd_4)
uv_dist[:, :, 1] = uv_dist[:, :, 1] + (s2 * rd_sq + s3 * rd_4)
# Finally, apply standard terms: focal length and camera centers.
if params.shape[-1] == 15:
fx_fy = params[:, 0].reshape(B, 1, 1)
cx_cy = params[:, 1:3].reshape(B, 1, 2)
else:
fx_fy = params[:, 0:2].reshape(B, 1, 2)
cx_cy = params[:, 2:4].reshape(B, 1, 2)
result = uv_dist * fx_fy + cx_cy
return result
# Core implementation of fisheye 624 unprojection. More details are documented here:
# https://facebookresearch.github.io/projectaria_tools/docs/tech_insights/camera_intrinsic_models#the-fisheye62-model
@torch.jit.script
def fisheye624_unproject_helper(uv, params, max_iters: int = 5):
"""
Batched implementation of the FisheyeRadTanThinPrism (aka Fisheye624) camera
model. There is no analytical solution for the inverse of the project()
function so this solves an optimization problem using Newton's method to get
the inverse.
Inputs:
uv: BxNx2 tensor of 2D pixels to be unprojected
params: Bx16 tensor of Fisheye624 parameters formatted like this:
[f_u f_v c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
or Bx15 tensor of Fisheye624 parameters formatted like this:
[f c_u c_v {k_0 ... k_5} {p_0 p_1} {s_0 s_1 s_2 s_3}]
Outputs:
xyz: BxNx3 tensor of 3D rays of uv points with z = 1.
Model for fisheye cameras with radial, tangential, and thin-prism distortion.
This model assumes fu=fv. This unproject function holds that:
X = unproject(project(X)) [for X=(x,y,z) in R^3, z>0]
and
x = project(unproject(s*x)) [for s!=0 and x=(u,v) in R^2]
Author: Daniel DeTone ([email protected])
"""
assert uv.ndim == 3, "Expected batched input shaped BxNx3"
assert params.ndim == 2
assert params.shape[-1] == 16 or params.shape[-1] == 15, "This model allows fx != fy"
eps = 1e-6
B, N = uv.shape[0], uv.shape[1]
if params.shape[-1] == 15:
fx_fy = params[:, 0].reshape(B, 1, 1)
cx_cy = params[:, 1:3].reshape(B, 1, 2)
else:
fx_fy = params[:, 0:2].reshape(B, 1, 2)
cx_cy = params[:, 2:4].reshape(B, 1, 2)
uv_dist = (uv - cx_cy) / fx_fy
# Compute xr_yr using Newton's method.
xr_yr = uv_dist.clone() # Initial guess.
for _ in range(max_iters):
uv_dist_est = xr_yr.clone()
# Tangential terms.
p0 = params[:, -6].reshape(B, 1)
p1 = params[:, -5].reshape(B, 1)
xr = xr_yr[:, :, 0].reshape(B, N)
yr = xr_yr[:, :, 1].reshape(B, N)
xr_yr_sq = torch.square(xr_yr)
xr_sq = xr_yr_sq[:, :, 0].reshape(B, N)
yr_sq = xr_yr_sq[:, :, 1].reshape(B, N)
rd_sq = xr_sq + yr_sq
uv_dist_est[:, :, 0] = uv_dist_est[:, :, 0] + ((2.0 * xr_sq + rd_sq) * p0 + 2.0 * xr * yr * p1)
uv_dist_est[:, :, 1] = uv_dist_est[:, :, 1] + ((2.0 * yr_sq + rd_sq) * p1 + 2.0 * xr * yr * p0)
# Thin Prism terms.
s0 = params[:, -4].reshape(B, 1)
s1 = params[:, -3].reshape(B, 1)
s2 = params[:, -2].reshape(B, 1)
s3 = params[:, -1].reshape(B, 1)
rd_4 = torch.square(rd_sq)
uv_dist_est[:, :, 0] = uv_dist_est[:, :, 0] + (s0 * rd_sq + s1 * rd_4)
uv_dist_est[:, :, 1] = uv_dist_est[:, :, 1] + (s2 * rd_sq + s3 * rd_4)
# Compute the derivative of uv_dist w.r.t. xr_yr.
duv_dist_dxr_yr = uv.new_ones(B, N, 2, 2)
duv_dist_dxr_yr[:, :, 0, 0] = 1.0 + 6.0 * xr_yr[:, :, 0] * p0 + 2.0 * xr_yr[:, :, 1] * p1
offdiag = 2.0 * (xr_yr[:, :, 0] * p1 + xr_yr[:, :, 1] * p0)
duv_dist_dxr_yr[:, :, 0, 1] = offdiag
duv_dist_dxr_yr[:, :, 1, 0] = offdiag
duv_dist_dxr_yr[:, :, 1, 1] = 1.0 + 6.0 * xr_yr[:, :, 1] * p1 + 2.0 * xr_yr[:, :, 0] * p0
xr_yr_sq_norm = xr_yr_sq[:, :, 0] + xr_yr_sq[:, :, 1]
temp1 = 2.0 * (s0 + 2.0 * s1 * xr_yr_sq_norm)
duv_dist_dxr_yr[:, :, 0, 0] = duv_dist_dxr_yr[:, :, 0, 0] + (xr_yr[:, :, 0] * temp1)
duv_dist_dxr_yr[:, :, 0, 1] = duv_dist_dxr_yr[:, :, 0, 1] + (xr_yr[:, :, 1] * temp1)
temp2 = 2.0 * (s2 + 2.0 * s3 * xr_yr_sq_norm)
duv_dist_dxr_yr[:, :, 1, 0] = duv_dist_dxr_yr[:, :, 1, 0] + (xr_yr[:, :, 0] * temp2)
duv_dist_dxr_yr[:, :, 1, 1] = duv_dist_dxr_yr[:, :, 1, 1] + (xr_yr[:, :, 1] * temp2)
# Compute 2x2 inverse manually here since torch.inverse() is very slow.
# Because this is slow: inv = duv_dist_dxr_yr.inverse()
# About a 10x reduction in speed with above line.
mat = duv_dist_dxr_yr.reshape(-1, 2, 2)
a = mat[:, 0, 0].reshape(-1, 1, 1)
b = mat[:, 0, 1].reshape(-1, 1, 1)
c = mat[:, 1, 0].reshape(-1, 1, 1)
d = mat[:, 1, 1].reshape(-1, 1, 1)
det = 1.0 / ((a * d) - (b * c))
top = torch.cat([d, -b], dim=2)
bot = torch.cat([-c, a], dim=2)
inv = det * torch.cat([top, bot], dim=1)
inv = inv.reshape(B, N, 2, 2)
# Manually compute 2x2 @ 2x1 matrix multiply.
# Because this is slow: step = (inv @ (uv_dist - uv_dist_est)[..., None])[..., 0]
diff = uv_dist - uv_dist_est
a = inv[:, :, 0, 0]
b = inv[:, :, 0, 1]
c = inv[:, :, 1, 0]
d = inv[:, :, 1, 1]
e = diff[:, :, 0]
f = diff[:, :, 1]
step = torch.stack([a * e + b * f, c * e + d * f], dim=-1)
# Newton step.
xr_yr = xr_yr + step
# Compute theta using Newton's method.
xr_yr_norm = xr_yr.norm(p=2, dim=2).reshape(B, N, 1)
th = xr_yr_norm.clone()
for _ in range(max_iters):
th_radial = uv.new_ones(B, N, 1)
dthd_th = uv.new_ones(B, N, 1)
for k in range(6):
r_k = params[:, -12 + k].reshape(B, 1, 1)
th_radial = th_radial + (r_k * torch.pow(th, 2 + k * 2))
dthd_th = dthd_th + ((3.0 + 2.0 * k) * r_k * torch.pow(th, 2 + k * 2))
th_radial = th_radial * th
step = (xr_yr_norm - th_radial) / dthd_th
# handle dthd_th close to 0.
step = torch.where(dthd_th.abs() > eps, step, torch.sign(step) * eps * 10.0)
th = th + step
# Compute the ray direction using theta and xr_yr.
close_to_zero = torch.logical_and(th.abs() < eps, xr_yr_norm.abs() < eps)
ray_dir = torch.where(close_to_zero, xr_yr, torch.tan(th) / xr_yr_norm * xr_yr)
ray = torch.cat([ray_dir, uv.new_ones(B, N, 1)], dim=2)
return ray
# unproject 2D point to 3D with fisheye624 model
def fisheye624_unproject(coords: torch.Tensor, distortion_params: torch.Tensor) -> torch.Tensor:
dirs = fisheye624_unproject_helper(coords.unsqueeze(0), distortion_params[0].unsqueeze(0))
# correct for camera space differences:
dirs[..., 1] = -dirs[..., 1]
dirs[..., 2] = -dirs[..., 2]
return dirs
|