Spaces:
Runtime error
Runtime error
File size: 51,211 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 |
"""
adopted from SparseFusion
Wrapper for the full CO3Dv2 dataset
#@ Modified from https://github.com/facebookresearch/pytorch3d
"""
import json
import logging
import math
import os
import random
import time
import warnings
from collections import defaultdict
from itertools import islice
from typing import (
Any,
ClassVar,
List,
Mapping,
Optional,
Sequence,
Tuple,
Type,
TypedDict,
Union,
)
from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from pytorch3d.utils import opencv_from_cameras_projection
from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import DatasetBase
from sgm.data.json_index_dataset import (
FrameAnnotsEntry,
_bbox_xywh_to_xyxy,
_bbox_xyxy_to_xywh,
_clamp_box_to_image_bounds_and_round,
_crop_around_box,
_get_1d_bounds,
_get_bbox_from_mask,
_get_clamp_bbox,
_load_1bit_png_mask,
_load_16big_png_depth,
_load_depth,
_load_depth_mask,
_load_image,
_load_mask,
_load_pointcloud,
_rescale_bbox,
_safe_as_tensor,
_seq_name_to_seed,
)
from sgm.data.objaverse import video_collate_fn
from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import (
get_available_subset_names,
)
from pytorch3d.renderer.cameras import PerspectiveCameras
logger = logging.getLogger(__name__)
from dataclasses import dataclass, field, fields
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras
from pytorch3d.structures.pointclouds import Pointclouds, join_pointclouds_as_batch
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
CO3D_ALL_CATEGORIES = list(
reversed(
[
"baseballbat",
"banana",
"bicycle",
"microwave",
"tv",
"cellphone",
"toilet",
"hairdryer",
"couch",
"kite",
"pizza",
"umbrella",
"wineglass",
"laptop",
"hotdog",
"stopsign",
"frisbee",
"baseballglove",
"cup",
"parkingmeter",
"backpack",
"toyplane",
"toybus",
"handbag",
"chair",
"keyboard",
"car",
"motorcycle",
"carrot",
"bottle",
"sandwich",
"remote",
"bowl",
"skateboard",
"toaster",
"mouse",
"toytrain",
"book",
"toytruck",
"orange",
"broccoli",
"plant",
"teddybear",
"suitcase",
"bench",
"ball",
"cake",
"vase",
"hydrant",
"apple",
"donut",
]
)
)
CO3D_ALL_TEN = [
"donut",
"apple",
"hydrant",
"vase",
"cake",
"ball",
"bench",
"suitcase",
"teddybear",
"plant",
]
# @ FROM https://github.com/facebookresearch/pytorch3d
@dataclass
class FrameData(Mapping[str, Any]):
"""
A type of the elements returned by indexing the dataset object.
It can represent both individual frames and batches of thereof;
in this documentation, the sizes of tensors refer to single frames;
add the first batch dimension for the collation result.
Args:
frame_number: The number of the frame within its sequence.
0-based continuous integers.
sequence_name: The unique name of the frame's sequence.
sequence_category: The object category of the sequence.
frame_timestamp: The time elapsed since the start of a sequence in sec.
image_size_hw: The size of the image in pixels; (height, width) tensor
of shape (2,).
image_path: The qualified path to the loaded image (with dataset_root).
image_rgb: A Tensor of shape `(3, H, W)` holding the RGB image
of the frame; elements are floats in [0, 1].
mask_crop: A binary mask of shape `(1, H, W)` denoting the valid image
regions. Regions can be invalid (mask_crop[i,j]=0) in case they
are a result of zero-padding of the image after cropping around
the object bounding box; elements are floats in {0.0, 1.0}.
depth_path: The qualified path to the frame's depth map.
depth_map: A float Tensor of shape `(1, H, W)` holding the depth map
of the frame; values correspond to distances from the camera;
use `depth_mask` and `mask_crop` to filter for valid pixels.
depth_mask: A binary mask of shape `(1, H, W)` denoting pixels of the
depth map that are valid for evaluation, they have been checked for
consistency across views; elements are floats in {0.0, 1.0}.
mask_path: A qualified path to the foreground probability mask.
fg_probability: A Tensor of `(1, H, W)` denoting the probability of the
pixels belonging to the captured object; elements are floats
in [0, 1].
bbox_xywh: The bounding box tightly enclosing the foreground object in the
format (x0, y0, width, height). The convention assumes that
`x0+width` and `y0+height` includes the boundary of the box.
I.e., to slice out the corresponding crop from an image tensor `I`
we execute `crop = I[..., y0:y0+height, x0:x0+width]`
crop_bbox_xywh: The bounding box denoting the boundaries of `image_rgb`
in the original image coordinates in the format (x0, y0, width, height).
The convention is the same as for `bbox_xywh`. `crop_bbox_xywh` differs
from `bbox_xywh` due to padding (which can happen e.g. due to
setting `JsonIndexDataset.box_crop_context > 0`)
camera: A PyTorch3D camera object corresponding the frame's viewpoint,
corrected for cropping if it happened.
camera_quality_score: The score proportional to the confidence of the
frame's camera estimation (the higher the more accurate).
point_cloud_quality_score: The score proportional to the accuracy of the
frame's sequence point cloud (the higher the more accurate).
sequence_point_cloud_path: The path to the sequence's point cloud.
sequence_point_cloud: A PyTorch3D Pointclouds object holding the
point cloud corresponding to the frame's sequence. When the object
represents a batch of frames, point clouds may be deduplicated;
see `sequence_point_cloud_idx`.
sequence_point_cloud_idx: Integer indices mapping frame indices to the
corresponding point clouds in `sequence_point_cloud`; to get the
corresponding point cloud to `image_rgb[i]`, use
`sequence_point_cloud[sequence_point_cloud_idx[i]]`.
frame_type: The type of the loaded frame specified in
`subset_lists_file`, if provided.
meta: A dict for storing additional frame information.
"""
frame_number: Optional[torch.LongTensor]
sequence_name: Union[str, List[str]]
sequence_category: Union[str, List[str]]
frame_timestamp: Optional[torch.Tensor] = None
image_size_hw: Optional[torch.Tensor] = None
image_path: Union[str, List[str], None] = None
image_rgb: Optional[torch.Tensor] = None
# masks out padding added due to cropping the square bit
mask_crop: Optional[torch.Tensor] = None
depth_path: Union[str, List[str], None] = ""
depth_map: Optional[torch.Tensor] = torch.zeros(1)
depth_mask: Optional[torch.Tensor] = torch.zeros(1)
mask_path: Union[str, List[str], None] = None
fg_probability: Optional[torch.Tensor] = None
bbox_xywh: Optional[torch.Tensor] = None
crop_bbox_xywh: Optional[torch.Tensor] = None
camera: Optional[PerspectiveCameras] = None
camera_quality_score: Optional[torch.Tensor] = None
point_cloud_quality_score: Optional[torch.Tensor] = None
sequence_point_cloud_path: Union[str, List[str], None] = ""
sequence_point_cloud: Optional[Pointclouds] = torch.zeros(1)
sequence_point_cloud_idx: Optional[torch.Tensor] = torch.zeros(1)
frame_type: Union[str, List[str], None] = "" # known | unseen
meta: dict = field(default_factory=lambda: {})
valid_region: Optional[torch.Tensor] = None
category_one_hot: Optional[torch.Tensor] = None
def to(self, *args, **kwargs):
new_params = {}
for f in fields(self):
value = getattr(self, f.name)
if isinstance(value, (torch.Tensor, Pointclouds, CamerasBase)):
new_params[f.name] = value.to(*args, **kwargs)
else:
new_params[f.name] = value
return type(self)(**new_params)
def cpu(self):
return self.to(device=torch.device("cpu"))
def cuda(self):
return self.to(device=torch.device("cuda"))
# the following functions make sure **frame_data can be passed to functions
def __iter__(self):
for f in fields(self):
yield f.name
def __getitem__(self, key):
return getattr(self, key)
def __len__(self):
return len(fields(self))
@classmethod
def collate(cls, batch):
"""
Given a list objects `batch` of class `cls`, collates them into a batched
representation suitable for processing with deep networks.
"""
elem = batch[0]
if isinstance(elem, cls):
pointcloud_ids = [id(el.sequence_point_cloud) for el in batch]
id_to_idx = defaultdict(list)
for i, pc_id in enumerate(pointcloud_ids):
id_to_idx[pc_id].append(i)
sequence_point_cloud = []
sequence_point_cloud_idx = -np.ones((len(batch),))
for i, ind in enumerate(id_to_idx.values()):
sequence_point_cloud_idx[ind] = i
sequence_point_cloud.append(batch[ind[0]].sequence_point_cloud)
assert (sequence_point_cloud_idx >= 0).all()
override_fields = {
"sequence_point_cloud": sequence_point_cloud,
"sequence_point_cloud_idx": sequence_point_cloud_idx.tolist(),
}
# note that the pre-collate value of sequence_point_cloud_idx is unused
collated = {}
for f in fields(elem):
list_values = override_fields.get(
f.name, [getattr(d, f.name) for d in batch]
)
collated[f.name] = (
cls.collate(list_values)
if all(list_value is not None for list_value in list_values)
else None
)
return cls(**collated)
elif isinstance(elem, Pointclouds):
return join_pointclouds_as_batch(batch)
elif isinstance(elem, CamerasBase):
# TODO: don't store K; enforce working in NDC space
return join_cameras_as_batch(batch)
else:
return torch.utils.data._utils.collate.default_collate(batch)
# @ MODIFIED FROM https://github.com/facebookresearch/pytorch3d
class CO3Dv2Wrapper(torch.utils.data.Dataset):
def __init__(
self,
root_dir="/drive/datasets/co3d/",
category="hydrant",
subset="fewview_train",
stage="train",
sample_batch_size=20,
image_size=256,
masked=False,
deprecated_val_region=False,
return_frame_data_list=False,
reso: int = 256,
mask_type: str = "random",
cond_aug_mean=-3.0,
cond_aug_std=0.5,
condition_on_elevation=False,
fps_id=0.0,
motion_bucket_id=300.0,
num_frames: int = 20,
use_mask: bool = True,
load_pixelnerf: bool = True,
scale_pose: bool = True,
max_n_cond: int = 5,
min_n_cond: int = 2,
cond_on_multi: bool = False,
):
root = root_dir
from typing import List
from co3d.dataset.data_types import (
FrameAnnotation,
SequenceAnnotation,
load_dataclass_jgzip,
)
self.dataset_root = root
self.path_manager = None
self.subset = subset
self.stage = stage
self.subset_lists_file: List[str] = [
f"{self.dataset_root}/{category}/set_lists/set_lists_{subset}.json"
]
self.subsets: Optional[List[str]] = [subset]
self.sample_batch_size = sample_batch_size
self.limit_to: int = 0
self.limit_sequences_to: int = 0
self.pick_sequence: Tuple[str, ...] = ()
self.exclude_sequence: Tuple[str, ...] = ()
self.limit_category_to: Tuple[int, ...] = ()
self.load_images: bool = True
self.load_depths: bool = False
self.load_depth_masks: bool = False
self.load_masks: bool = True
self.load_point_clouds: bool = False
self.max_points: int = 0
self.mask_images: bool = False
self.mask_depths: bool = False
self.image_height: Optional[int] = image_size
self.image_width: Optional[int] = image_size
self.box_crop: bool = True
self.box_crop_mask_thr: float = 0.4
self.box_crop_context: float = 0.3
self.remove_empty_masks: bool = True
self.n_frames_per_sequence: int = -1
self.seed: int = 0
self.sort_frames: bool = False
self.eval_batches: Any = None
self.img_h = self.image_height
self.img_w = self.image_width
self.masked = masked
self.deprecated_val_region = deprecated_val_region
self.return_frame_data_list = return_frame_data_list
self.reso = reso
self.num_frames = num_frames
self.cond_aug_mean = cond_aug_mean
self.cond_aug_std = cond_aug_std
self.condition_on_elevation = condition_on_elevation
self.fps_id = fps_id
self.motion_bucket_id = motion_bucket_id
self.mask_type = mask_type
self.use_mask = use_mask
self.load_pixelnerf = load_pixelnerf
self.scale_pose = scale_pose
self.max_n_cond = max_n_cond
self.min_n_cond = min_n_cond
self.cond_on_multi = cond_on_multi
if self.cond_on_multi:
assert self.min_n_cond == self.max_n_cond
start_time = time.time()
if "all_" in category or category == "all":
self.category_frame_annotations = []
self.category_sequence_annotations = []
self.subset_lists_file = []
if category == "all":
cats = CO3D_ALL_CATEGORIES
elif category == "all_four":
cats = ["hydrant", "teddybear", "motorcycle", "bench"]
elif category == "all_ten":
cats = [
"donut",
"apple",
"hydrant",
"vase",
"cake",
"ball",
"bench",
"suitcase",
"teddybear",
"plant",
]
elif category == "all_15":
cats = [
"hydrant",
"teddybear",
"motorcycle",
"bench",
"hotdog",
"remote",
"suitcase",
"donut",
"plant",
"toaster",
"keyboard",
"handbag",
"toyplane",
"tv",
"orange",
]
else:
print("UNSPECIFIED CATEGORY SUBSET")
cats = ["hydrant", "teddybear"]
print("loading", cats)
for cat in cats:
self.category_frame_annotations.extend(
load_dataclass_jgzip(
f"{self.dataset_root}/{cat}/frame_annotations.jgz",
List[FrameAnnotation],
)
)
self.category_sequence_annotations.extend(
load_dataclass_jgzip(
f"{self.dataset_root}/{cat}/sequence_annotations.jgz",
List[SequenceAnnotation],
)
)
self.subset_lists_file.append(
f"{self.dataset_root}/{cat}/set_lists/set_lists_{subset}.json"
)
else:
self.category_frame_annotations = load_dataclass_jgzip(
f"{self.dataset_root}/{category}/frame_annotations.jgz",
List[FrameAnnotation],
)
self.category_sequence_annotations = load_dataclass_jgzip(
f"{self.dataset_root}/{category}/sequence_annotations.jgz",
List[SequenceAnnotation],
)
self.subset_to_image_path = None
self._load_frames()
self._load_sequences()
self._sort_frames()
self._load_subset_lists()
self._filter_db() # also computes sequence indices
# self._extract_and_set_eval_batches()
# print(self.eval_batches)
logger.info(str(self))
self.seq_to_frames = {}
for fi, item in enumerate(self.frame_annots):
if item["frame_annotation"].sequence_name in self.seq_to_frames:
self.seq_to_frames[item["frame_annotation"].sequence_name].append(fi)
else:
self.seq_to_frames[item["frame_annotation"].sequence_name] = [fi]
if self.stage != "test" or self.subset != "fewview_test":
count = 0
new_seq_to_frames = {}
for item in self.seq_to_frames:
if len(self.seq_to_frames[item]) > 10:
count += 1
new_seq_to_frames[item] = self.seq_to_frames[item]
self.seq_to_frames = new_seq_to_frames
self.seq_list = list(self.seq_to_frames.keys())
# @ REMOVE A FEW TRAINING SEQ THAT CAUSES BUG
remove_list = ["411_55952_107659", "376_42884_85882"]
for remove_idx in remove_list:
if remove_idx in self.seq_to_frames:
self.seq_list.remove(remove_idx)
print("removing", remove_idx)
print("total training seq", len(self.seq_to_frames))
print("data loading took", time.time() - start_time, "seconds")
self.all_category_list = list(CO3D_ALL_CATEGORIES)
self.all_category_list.sort()
self.cat_to_idx = {}
for ci, cname in enumerate(self.all_category_list):
self.cat_to_idx[cname] = ci
def __len__(self):
return len(self.seq_list)
def __getitem__(self, index):
seq_index = self.seq_list[index]
if self.subset == "fewview_test" and self.stage == "test":
batch_idx = torch.arange(len(self.seq_to_frames[seq_index]))
elif self.stage == "test":
batch_idx = (
torch.linspace(
0, len(self.seq_to_frames[seq_index]) - 1, self.sample_batch_size
)
.long()
.tolist()
)
else:
rand = torch.randperm(len(self.seq_to_frames[seq_index]))
batch_idx = rand[: min(len(rand), self.sample_batch_size)]
frame_data_list = []
idx_list = []
timestamp_list = []
for idx in batch_idx:
idx_list.append(self.seq_to_frames[seq_index][idx])
timestamp_list.append(
self.frame_annots[self.seq_to_frames[seq_index][idx]][
"frame_annotation"
].frame_timestamp
)
frame_data_list.append(
self._get_frame(int(self.seq_to_frames[seq_index][idx]))
)
time_order = torch.argsort(torch.tensor(timestamp_list))
frame_data_list = [frame_data_list[i] for i in time_order]
frame_data = FrameData.collate(frame_data_list)
image_size = torch.Tensor([self.image_height]).repeat(
frame_data.camera.R.shape[0], 2
)
frame_dict = {
"R": frame_data.camera.R,
"T": frame_data.camera.T,
"f": frame_data.camera.focal_length,
"c": frame_data.camera.principal_point,
"images": frame_data.image_rgb * frame_data.fg_probability
+ (1 - frame_data.fg_probability),
"valid_region": frame_data.mask_crop,
"bbox": frame_data.valid_region,
"image_size": image_size,
"frame_type": frame_data.frame_type,
"idx": seq_index,
"category": frame_data.category_one_hot,
}
if not self.masked:
frame_dict["images_full"] = frame_data.image_rgb
frame_dict["masks"] = frame_data.fg_probability
frame_dict["mask_crop"] = frame_data.mask_crop
cond_aug = np.exp(
np.random.randn(1)[0] * self.cond_aug_std + self.cond_aug_mean
)
def _pad(input):
return torch.cat([input, torch.flip(input, dims=[0])], dim=0)[
: self.num_frames
]
if len(frame_dict["images"]) < self.num_frames:
for k in frame_dict:
if isinstance(frame_dict[k], torch.Tensor):
frame_dict[k] = _pad(frame_dict[k])
data = dict()
if "images_full" in frame_dict:
frames = frame_dict["images_full"] * 2 - 1
else:
frames = frame_dict["images"] * 2 - 1
data["frames"] = frames
cond = frames[0]
data["cond_frames_without_noise"] = cond
data["cond_aug"] = torch.as_tensor([cond_aug] * self.num_frames)
data["cond_frames"] = cond + cond_aug * torch.randn_like(cond)
data["fps_id"] = torch.as_tensor([self.fps_id] * self.num_frames)
data["motion_bucket_id"] = torch.as_tensor(
[self.motion_bucket_id] * self.num_frames
)
data["num_video_frames"] = self.num_frames
data["image_only_indicator"] = torch.as_tensor([0.0] * self.num_frames)
if self.load_pixelnerf:
data["pixelnerf_input"] = dict()
# Rs = frame_dict["R"].transpose(-1, -2)
# Ts = frame_dict["T"]
# Rs[:, :, 2] *= -1
# Rs[:, :, 0] *= -1
# Ts[:, 2] *= -1
# Ts[:, 0] *= -1
# c2ws = torch.zeros(Rs.shape[0], 4, 4)
# c2ws[:, :3, :3] = Rs
# c2ws[:, :3, 3] = Ts
# c2ws[:, 3, 3] = 1
# c2ws = c2ws.inverse()
# # c2ws[..., 0] *= -1
# # c2ws[..., 2] *= -1
# cx = frame_dict["c"][:, 0]
# cy = frame_dict["c"][:, 1]
# fx = frame_dict["f"][:, 0]
# fy = frame_dict["f"][:, 1]
# intrinsics = torch.zeros(cx.shape[0], 3, 3)
# intrinsics[:, 2, 2] = 1
# intrinsics[:, 0, 0] = fx
# intrinsics[:, 1, 1] = fy
# intrinsics[:, 0, 2] = cx
# intrinsics[:, 1, 2] = cy
scene_cameras = PerspectiveCameras(
R=frame_dict["R"],
T=frame_dict["T"],
focal_length=frame_dict["f"],
principal_point=frame_dict["c"],
image_size=frame_dict["image_size"],
)
R, T, intrinsics = opencv_from_cameras_projection(
scene_cameras, frame_dict["image_size"]
)
c2ws = torch.zeros(R.shape[0], 4, 4)
c2ws[:, :3, :3] = R
c2ws[:, :3, 3] = T
c2ws[:, 3, 3] = 1.0
c2ws = c2ws.inverse()
c2ws[..., 1:3] *= -1
intrinsics[:, :2] /= 256
cameras = torch.zeros(c2ws.shape[0], 25)
cameras[..., :16] = c2ws.reshape(-1, 16)
cameras[..., 16:] = intrinsics.reshape(-1, 9)
if self.scale_pose:
c2ws = cameras[..., :16].reshape(-1, 4, 4)
center = c2ws[:, :3, 3].mean(0)
radius = (c2ws[:, :3, 3] - center).norm(dim=-1).max()
scale = 1.5 / radius
c2ws[..., :3, 3] = (c2ws[..., :3, 3] - center) * scale
cameras[..., :16] = c2ws.reshape(-1, 16)
data["pixelnerf_input"]["frames"] = frames
data["pixelnerf_input"]["cameras"] = cameras
data["pixelnerf_input"]["rgb"] = (
F.interpolate(
frames,
(self.image_width // 8, self.image_height // 8),
mode="bilinear",
align_corners=False,
)
+ 1
) * 0.5
return data
# if self.return_frame_data_list:
# return (frame_dict, frame_data_list)
# return frame_dict
def collate_fn(self, batch):
# a hack to add source index and keep consistent within a batch
if self.max_n_cond > 1:
# TODO implement this
n_cond = np.random.randint(self.min_n_cond, self.max_n_cond + 1)
# debug
# source_index = [0]
if n_cond > 1:
for b in batch:
source_index = [0] + np.random.choice(
np.arange(1, self.num_frames),
self.max_n_cond - 1,
replace=False,
).tolist()
b["pixelnerf_input"]["source_index"] = torch.as_tensor(source_index)
b["pixelnerf_input"]["n_cond"] = n_cond
b["pixelnerf_input"]["source_images"] = b["frames"][source_index]
b["pixelnerf_input"]["source_cameras"] = b["pixelnerf_input"][
"cameras"
][source_index]
if self.cond_on_multi:
b["cond_frames_without_noise"] = b["frames"][source_index]
ret = video_collate_fn(batch)
if self.cond_on_multi:
ret["cond_frames_without_noise"] = rearrange(
ret["cond_frames_without_noise"], "b t ... -> (b t) ..."
)
return ret
def _get_frame(self, index):
# if index >= len(self.frame_annots):
# raise IndexError(f"index {index} out of range {len(self.frame_annots)}")
entry = self.frame_annots[index]["frame_annotation"]
# pyre-ignore[16]
point_cloud = self.seq_annots[entry.sequence_name].point_cloud
frame_data = FrameData(
frame_number=_safe_as_tensor(entry.frame_number, torch.long),
frame_timestamp=_safe_as_tensor(entry.frame_timestamp, torch.float),
sequence_name=entry.sequence_name,
sequence_category=self.seq_annots[entry.sequence_name].category,
camera_quality_score=_safe_as_tensor(
self.seq_annots[entry.sequence_name].viewpoint_quality_score,
torch.float,
),
point_cloud_quality_score=_safe_as_tensor(
point_cloud.quality_score, torch.float
)
if point_cloud is not None
else None,
)
# The rest of the fields are optional
frame_data.frame_type = self._get_frame_type(self.frame_annots[index])
(
frame_data.fg_probability,
frame_data.mask_path,
frame_data.bbox_xywh,
clamp_bbox_xyxy,
frame_data.crop_bbox_xywh,
) = self._load_crop_fg_probability(entry)
scale = 1.0
if self.load_images and entry.image is not None:
# original image size
frame_data.image_size_hw = _safe_as_tensor(entry.image.size, torch.long)
(
frame_data.image_rgb,
frame_data.image_path,
frame_data.mask_crop,
scale,
) = self._load_crop_images(
entry, frame_data.fg_probability, clamp_bbox_xyxy
)
# print(frame_data.fg_probability.sum())
# print('scale', scale)
#! INSERT
if self.deprecated_val_region:
# print(frame_data.crop_bbox_xywh)
valid_bbox = _bbox_xywh_to_xyxy(frame_data.crop_bbox_xywh).float()
# print(valid_bbox, frame_data.image_size_hw)
valid_bbox[0] = torch.clip(
(
valid_bbox[0]
- torch.div(frame_data.image_size_hw[1], 2, rounding_mode="floor")
)
/ torch.div(frame_data.image_size_hw[1], 2, rounding_mode="floor"),
-1.0,
1.0,
)
valid_bbox[1] = torch.clip(
(
valid_bbox[1]
- torch.div(frame_data.image_size_hw[0], 2, rounding_mode="floor")
)
/ torch.div(frame_data.image_size_hw[0], 2, rounding_mode="floor"),
-1.0,
1.0,
)
valid_bbox[2] = torch.clip(
(
valid_bbox[2]
- torch.div(frame_data.image_size_hw[1], 2, rounding_mode="floor")
)
/ torch.div(frame_data.image_size_hw[1], 2, rounding_mode="floor"),
-1.0,
1.0,
)
valid_bbox[3] = torch.clip(
(
valid_bbox[3]
- torch.div(frame_data.image_size_hw[0], 2, rounding_mode="floor")
)
/ torch.div(frame_data.image_size_hw[0], 2, rounding_mode="floor"),
-1.0,
1.0,
)
# print(valid_bbox)
frame_data.valid_region = valid_bbox
else:
#! UPDATED VALID BBOX
if self.stage == "train":
assert self.image_height == 256 and self.image_width == 256
valid = torch.nonzero(frame_data.mask_crop[0])
min_y = valid[:, 0].min()
min_x = valid[:, 1].min()
max_y = valid[:, 0].max()
max_x = valid[:, 1].max()
valid_bbox = torch.tensor(
[min_y, min_x, max_y, max_x], device=frame_data.image_rgb.device
).unsqueeze(0)
valid_bbox = torch.clip(
(valid_bbox - (256 // 2)) / (256 // 2), -1.0, 1.0
)
frame_data.valid_region = valid_bbox[0]
else:
valid = torch.nonzero(frame_data.mask_crop[0])
min_y = valid[:, 0].min()
min_x = valid[:, 1].min()
max_y = valid[:, 0].max()
max_x = valid[:, 1].max()
valid_bbox = torch.tensor(
[min_y, min_x, max_y, max_x], device=frame_data.image_rgb.device
).unsqueeze(0)
valid_bbox = torch.clip(
(valid_bbox - (self.image_height // 2)) / (self.image_height // 2),
-1.0,
1.0,
)
frame_data.valid_region = valid_bbox[0]
#! SET CLASS ONEHOT
frame_data.category_one_hot = torch.zeros(
(len(self.all_category_list)), device=frame_data.image_rgb.device
)
frame_data.category_one_hot[self.cat_to_idx[frame_data.sequence_category]] = 1
if self.load_depths and entry.depth is not None:
(
frame_data.depth_map,
frame_data.depth_path,
frame_data.depth_mask,
) = self._load_mask_depth(entry, clamp_bbox_xyxy, frame_data.fg_probability)
if entry.viewpoint is not None:
frame_data.camera = self._get_pytorch3d_camera(
entry,
scale,
clamp_bbox_xyxy,
)
if self.load_point_clouds and point_cloud is not None:
frame_data.sequence_point_cloud_path = pcl_path = os.path.join(
self.dataset_root, point_cloud.path
)
frame_data.sequence_point_cloud = _load_pointcloud(
self._local_path(pcl_path), max_points=self.max_points
)
# for key in frame_data:
# if frame_data[key] == None:
# print(key)
return frame_data
def _extract_and_set_eval_batches(self):
"""
Sets eval_batches based on input eval_batch_index.
"""
if self.eval_batch_index is not None:
if self.eval_batches is not None:
raise ValueError(
"Cannot define both eval_batch_index and eval_batches."
)
self.eval_batches = self.seq_frame_index_to_dataset_index(
self.eval_batch_index
)
def _load_crop_fg_probability(
self, entry: types.FrameAnnotation
) -> Tuple[
Optional[torch.Tensor],
Optional[str],
Optional[torch.Tensor],
Optional[torch.Tensor],
Optional[torch.Tensor],
]:
fg_probability = None
full_path = None
bbox_xywh = None
clamp_bbox_xyxy = None
crop_box_xywh = None
if (self.load_masks or self.box_crop) and entry.mask is not None:
full_path = os.path.join(self.dataset_root, entry.mask.path)
mask = _load_mask(self._local_path(full_path))
if mask.shape[-2:] != entry.image.size:
raise ValueError(
f"bad mask size: {mask.shape[-2:]} vs {entry.image.size}!"
)
bbox_xywh = torch.tensor(_get_bbox_from_mask(mask, self.box_crop_mask_thr))
if self.box_crop:
clamp_bbox_xyxy = _clamp_box_to_image_bounds_and_round(
_get_clamp_bbox(
bbox_xywh,
image_path=entry.image.path,
box_crop_context=self.box_crop_context,
),
image_size_hw=tuple(mask.shape[-2:]),
)
crop_box_xywh = _bbox_xyxy_to_xywh(clamp_bbox_xyxy)
mask = _crop_around_box(mask, clamp_bbox_xyxy, full_path)
fg_probability, _, _ = self._resize_image(mask, mode="nearest")
return fg_probability, full_path, bbox_xywh, clamp_bbox_xyxy, crop_box_xywh
def _load_crop_images(
self,
entry: types.FrameAnnotation,
fg_probability: Optional[torch.Tensor],
clamp_bbox_xyxy: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, str, torch.Tensor, float]:
assert self.dataset_root is not None and entry.image is not None
path = os.path.join(self.dataset_root, entry.image.path)
image_rgb = _load_image(self._local_path(path))
if image_rgb.shape[-2:] != entry.image.size:
raise ValueError(
f"bad image size: {image_rgb.shape[-2:]} vs {entry.image.size}!"
)
if self.box_crop:
assert clamp_bbox_xyxy is not None
image_rgb = _crop_around_box(image_rgb, clamp_bbox_xyxy, path)
image_rgb, scale, mask_crop = self._resize_image(image_rgb)
if self.mask_images:
assert fg_probability is not None
image_rgb *= fg_probability
return image_rgb, path, mask_crop, scale
def _load_mask_depth(
self,
entry: types.FrameAnnotation,
clamp_bbox_xyxy: Optional[torch.Tensor],
fg_probability: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, str, torch.Tensor]:
entry_depth = entry.depth
assert entry_depth is not None
path = os.path.join(self.dataset_root, entry_depth.path)
depth_map = _load_depth(self._local_path(path), entry_depth.scale_adjustment)
if self.box_crop:
assert clamp_bbox_xyxy is not None
depth_bbox_xyxy = _rescale_bbox(
clamp_bbox_xyxy, entry.image.size, depth_map.shape[-2:]
)
depth_map = _crop_around_box(depth_map, depth_bbox_xyxy, path)
depth_map, _, _ = self._resize_image(depth_map, mode="nearest")
if self.mask_depths:
assert fg_probability is not None
depth_map *= fg_probability
if self.load_depth_masks:
assert entry_depth.mask_path is not None
mask_path = os.path.join(self.dataset_root, entry_depth.mask_path)
depth_mask = _load_depth_mask(self._local_path(mask_path))
if self.box_crop:
assert clamp_bbox_xyxy is not None
depth_mask_bbox_xyxy = _rescale_bbox(
clamp_bbox_xyxy, entry.image.size, depth_mask.shape[-2:]
)
depth_mask = _crop_around_box(
depth_mask, depth_mask_bbox_xyxy, mask_path
)
depth_mask, _, _ = self._resize_image(depth_mask, mode="nearest")
else:
depth_mask = torch.ones_like(depth_map)
return depth_map, path, depth_mask
def _get_pytorch3d_camera(
self,
entry: types.FrameAnnotation,
scale: float,
clamp_bbox_xyxy: Optional[torch.Tensor],
) -> PerspectiveCameras:
entry_viewpoint = entry.viewpoint
assert entry_viewpoint is not None
# principal point and focal length
principal_point = torch.tensor(
entry_viewpoint.principal_point, dtype=torch.float
)
focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)
half_image_size_wh_orig = (
torch.tensor(list(reversed(entry.image.size)), dtype=torch.float) / 2.0
)
# first, we convert from the dataset's NDC convention to pixels
format = entry_viewpoint.intrinsics_format
if format.lower() == "ndc_norm_image_bounds":
# this is e.g. currently used in CO3D for storing intrinsics
rescale = half_image_size_wh_orig
elif format.lower() == "ndc_isotropic":
rescale = half_image_size_wh_orig.min()
else:
raise ValueError(f"Unknown intrinsics format: {format}")
# principal point and focal length in pixels
principal_point_px = half_image_size_wh_orig - principal_point * rescale
focal_length_px = focal_length * rescale
if self.box_crop:
assert clamp_bbox_xyxy is not None
principal_point_px -= clamp_bbox_xyxy[:2]
# now, convert from pixels to PyTorch3D v0.5+ NDC convention
if self.image_height is None or self.image_width is None:
out_size = list(reversed(entry.image.size))
else:
out_size = [self.image_width, self.image_height]
half_image_size_output = torch.tensor(out_size, dtype=torch.float) / 2.0
half_min_image_size_output = half_image_size_output.min()
# rescaled principal point and focal length in ndc
principal_point = (
half_image_size_output - principal_point_px * scale
) / half_min_image_size_output
focal_length = focal_length_px * scale / half_min_image_size_output
return PerspectiveCameras(
focal_length=focal_length[None],
principal_point=principal_point[None],
R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None],
T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None],
)
def _load_frames(self) -> None:
self.frame_annots = [
FrameAnnotsEntry(frame_annotation=a, subset=None)
for a in self.category_frame_annotations
]
def _load_sequences(self) -> None:
self.seq_annots = {
entry.sequence_name: entry for entry in self.category_sequence_annotations
}
def _load_subset_lists(self) -> None:
logger.info(f"Loading Co3D subset lists from {self.subset_lists_file}.")
if not self.subset_lists_file:
return
frame_path_to_subset = {}
for subset_list_file in self.subset_lists_file:
with open(self._local_path(subset_list_file), "r") as f:
subset_to_seq_frame = json.load(f)
#! PRINT SUBSET_LIST STATS
# if len(self.subset_lists_file) == 1:
# print('train frames', len(subset_to_seq_frame['train']))
# print('val frames', len(subset_to_seq_frame['val']))
# print('test frames', len(subset_to_seq_frame['test']))
for set_ in subset_to_seq_frame:
for _, _, path in subset_to_seq_frame[set_]:
if path in frame_path_to_subset:
frame_path_to_subset[path].add(set_)
else:
frame_path_to_subset[path] = {set_}
# pyre-ignore[16]
for frame in self.frame_annots:
frame["subset"] = frame_path_to_subset.get(
frame["frame_annotation"].image.path, None
)
if frame["subset"] is None:
continue
warnings.warn(
"Subset lists are given but don't include "
+ frame["frame_annotation"].image.path
)
def _sort_frames(self) -> None:
# Sort frames to have them grouped by sequence, ordered by timestamp
# pyre-ignore[16]
self.frame_annots = sorted(
self.frame_annots,
key=lambda f: (
f["frame_annotation"].sequence_name,
f["frame_annotation"].frame_timestamp or 0,
),
)
def _filter_db(self) -> None:
if self.remove_empty_masks:
logger.info("Removing images with empty masks.")
# pyre-ignore[16]
old_len = len(self.frame_annots)
msg = "remove_empty_masks needs every MaskAnnotation.mass to be set."
def positive_mass(frame_annot: types.FrameAnnotation) -> bool:
mask = frame_annot.mask
if mask is None:
return False
if mask.mass is None:
raise ValueError(msg)
return mask.mass > 1
self.frame_annots = [
frame
for frame in self.frame_annots
if positive_mass(frame["frame_annotation"])
]
logger.info("... filtered %d -> %d" % (old_len, len(self.frame_annots)))
# this has to be called after joining with categories!!
subsets = self.subsets
if subsets:
if not self.subset_lists_file:
raise ValueError(
"Subset filter is on but subset_lists_file was not given"
)
logger.info(f"Limiting Co3D dataset to the '{subsets}' subsets.")
# truncate the list of subsets to the valid one
self.frame_annots = [
entry
for entry in self.frame_annots
if (entry["subset"] is not None and self.stage in entry["subset"])
]
if len(self.frame_annots) == 0:
raise ValueError(f"There are no frames in the '{subsets}' subsets!")
self._invalidate_indexes(filter_seq_annots=True)
if len(self.limit_category_to) > 0:
logger.info(f"Limiting dataset to categories: {self.limit_category_to}")
# pyre-ignore[16]
self.seq_annots = {
name: entry
for name, entry in self.seq_annots.items()
if entry.category in self.limit_category_to
}
# sequence filters
for prefix in ("pick", "exclude"):
orig_len = len(self.seq_annots)
attr = f"{prefix}_sequence"
arr = getattr(self, attr)
if len(arr) > 0:
logger.info(f"{attr}: {str(arr)}")
self.seq_annots = {
name: entry
for name, entry in self.seq_annots.items()
if (name in arr) == (prefix == "pick")
}
logger.info("... filtered %d -> %d" % (orig_len, len(self.seq_annots)))
if self.limit_sequences_to > 0:
self.seq_annots = dict(
islice(self.seq_annots.items(), self.limit_sequences_to)
)
# retain only frames from retained sequences
self.frame_annots = [
f
for f in self.frame_annots
if f["frame_annotation"].sequence_name in self.seq_annots
]
self._invalidate_indexes()
if self.n_frames_per_sequence > 0:
logger.info(f"Taking max {self.n_frames_per_sequence} per sequence.")
keep_idx = []
# pyre-ignore[16]
for seq, seq_indices in self._seq_to_idx.items():
# infer the seed from the sequence name, this is reproducible
# and makes the selection differ for different sequences
seed = _seq_name_to_seed(seq) + self.seed
seq_idx_shuffled = random.Random(seed).sample(
sorted(seq_indices), len(seq_indices)
)
keep_idx.extend(seq_idx_shuffled[: self.n_frames_per_sequence])
logger.info(
"... filtered %d -> %d" % (len(self.frame_annots), len(keep_idx))
)
self.frame_annots = [self.frame_annots[i] for i in keep_idx]
self._invalidate_indexes(filter_seq_annots=False)
# sequences are not decimated, so self.seq_annots is valid
if self.limit_to > 0 and self.limit_to < len(self.frame_annots):
logger.info(
"limit_to: filtered %d -> %d" % (len(self.frame_annots), self.limit_to)
)
self.frame_annots = self.frame_annots[: self.limit_to]
self._invalidate_indexes(filter_seq_annots=True)
def _invalidate_indexes(self, filter_seq_annots: bool = False) -> None:
# update _seq_to_idx and filter seq_meta according to frame_annots change
# if filter_seq_annots, also uldates seq_annots based on the changed _seq_to_idx
self._invalidate_seq_to_idx()
if filter_seq_annots:
# pyre-ignore[16]
self.seq_annots = {
k: v
for k, v in self.seq_annots.items()
# pyre-ignore[16]
if k in self._seq_to_idx
}
def _invalidate_seq_to_idx(self) -> None:
seq_to_idx = defaultdict(list)
# pyre-ignore[16]
for idx, entry in enumerate(self.frame_annots):
seq_to_idx[entry["frame_annotation"].sequence_name].append(idx)
# pyre-ignore[16]
self._seq_to_idx = seq_to_idx
def _resize_image(
self, image, mode="bilinear"
) -> Tuple[torch.Tensor, float, torch.Tensor]:
image_height, image_width = self.image_height, self.image_width
if image_height is None or image_width is None:
# skip the resizing
imre_ = torch.from_numpy(image)
return imre_, 1.0, torch.ones_like(imre_[:1])
# takes numpy array, returns pytorch tensor
minscale = min(
image_height / image.shape[-2],
image_width / image.shape[-1],
)
imre = torch.nn.functional.interpolate(
torch.from_numpy(image)[None],
scale_factor=minscale,
mode=mode,
align_corners=False if mode == "bilinear" else None,
recompute_scale_factor=True,
)[0]
# pyre-fixme[19]: Expected 1 positional argument.
imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width)
imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
# pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`.
# pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`.
mask = torch.zeros(1, self.image_height, self.image_width)
mask[:, 0 : imre.shape[1], 0 : imre.shape[2]] = 1.0
return imre_, minscale, mask
def _local_path(self, path: str) -> str:
if self.path_manager is None:
return path
return self.path_manager.get_local_path(path)
def get_frame_numbers_and_timestamps(
self, idxs: Sequence[int]
) -> List[Tuple[int, float]]:
out: List[Tuple[int, float]] = []
for idx in idxs:
# pyre-ignore[16]
frame_annotation = self.frame_annots[idx]["frame_annotation"]
out.append(
(frame_annotation.frame_number, frame_annotation.frame_timestamp)
)
return out
def get_eval_batches(self) -> Optional[List[List[int]]]:
return self.eval_batches
def _get_frame_type(self, entry: FrameAnnotsEntry) -> Optional[str]:
return entry["frame_annotation"].meta["frame_type"]
class CO3DDataset(LightningDataModule):
def __init__(
self,
root_dir,
batch_size=2,
shuffle=True,
num_workers=10,
prefetch_factor=2,
category="hydrant",
**kwargs,
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.prefetch_factor = prefetch_factor
self.shuffle = shuffle
self.train_dataset = CO3Dv2Wrapper(
root_dir=root_dir,
stage="train",
category=category,
**kwargs,
)
self.test_dataset = CO3Dv2Wrapper(
root_dir=root_dir,
stage="test",
subset="fewview_dev",
category=category,
**kwargs,
)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=self.train_dataset.collate_fn,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=self.test_dataset.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
prefetch_factor=self.prefetch_factor,
collate_fn=video_collate_fn,
)
|