File size: 42,530 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import copy
import functools
import gzip
import hashlib
import json
import logging
import os
import random
import warnings
from collections import defaultdict
from itertools import islice
from pathlib import Path
from typing import (
    Any,
    ClassVar,
    Dict,
    Iterable,
    List,
    Optional,
    Sequence,
    Tuple,
    Type,
    TYPE_CHECKING,
    Union,
)

import numpy as np
import torch
from PIL import Image
from pytorch3d.implicitron.tools.config import registry, ReplaceableBase
from pytorch3d.io import IO
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras
from pytorch3d.structures.pointclouds import Pointclouds
from tqdm import tqdm

from pytorch3d.implicitron.dataset import types
from pytorch3d.implicitron.dataset.dataset_base import DatasetBase, FrameData
from pytorch3d.implicitron.dataset.utils import is_known_frame_scalar


logger = logging.getLogger(__name__)


if TYPE_CHECKING:
    from typing import TypedDict

    class FrameAnnotsEntry(TypedDict):
        subset: Optional[str]
        frame_annotation: types.FrameAnnotation

else:
    FrameAnnotsEntry = dict


@registry.register
class JsonIndexDataset(DatasetBase, ReplaceableBase):
    """
    A dataset with annotations in json files like the Common Objects in 3D
    (CO3D) dataset.

    Args:
        frame_annotations_file: A zipped json file containing metadata of the
            frames in the dataset, serialized List[types.FrameAnnotation].
        sequence_annotations_file: A zipped json file containing metadata of the
            sequences in the dataset, serialized List[types.SequenceAnnotation].
        subset_lists_file: A json file containing the lists of frames corresponding
            corresponding to different subsets (e.g. train/val/test) of the dataset;
            format: {subset: (sequence_name, frame_id, file_path)}.
        subsets: Restrict frames/sequences only to the given list of subsets
            as defined in subset_lists_file (see above).
        limit_to: Limit the dataset to the first #limit_to frames (after other
            filters have been applied).
        limit_sequences_to: Limit the dataset to the first
            #limit_sequences_to sequences (after other sequence filters have been
            applied but before frame-based filters).
        pick_sequence: A list of sequence names to restrict the dataset to.
        exclude_sequence: A list of the names of the sequences to exclude.
        limit_category_to: Restrict the dataset to the given list of categories.
        dataset_root: The root folder of the dataset; all the paths in jsons are
            specified relative to this root (but not json paths themselves).
        load_images: Enable loading the frame RGB data.
        load_depths: Enable loading the frame depth maps.
        load_depth_masks: Enable loading the frame depth map masks denoting the
            depth values used for evaluation (the points consistent across views).
        load_masks: Enable loading frame foreground masks.
        load_point_clouds: Enable loading sequence-level point clouds.
        max_points: Cap on the number of loaded points in the point cloud;
            if reached, they are randomly sampled without replacement.
        mask_images: Whether to mask the images with the loaded foreground masks;
            0 value is used for background.
        mask_depths: Whether to mask the depth maps with the loaded foreground
            masks; 0 value is used for background.
        image_height: The height of the returned images, masks, and depth maps;
            aspect ratio is preserved during cropping/resizing.
        image_width: The width of the returned images, masks, and depth maps;
            aspect ratio is preserved during cropping/resizing.
        box_crop: Enable cropping of the image around the bounding box inferred
            from the foreground region of the loaded segmentation mask; masks
            and depth maps are cropped accordingly; cameras are corrected.
        box_crop_mask_thr: The threshold used to separate pixels into foreground
            and background based on the foreground_probability mask; if no value
            is greater than this threshold, the loader lowers it and repeats.
        box_crop_context: The amount of additional padding added to each
            dimension of the cropping bounding box, relative to box size.
        remove_empty_masks: Removes the frames with no active foreground pixels
            in the segmentation mask after thresholding (see box_crop_mask_thr).
        n_frames_per_sequence: If > 0, randomly samples #n_frames_per_sequence
            frames in each sequences uniformly without replacement if it has
            more frames than that; applied before other frame-level filters.
        seed: The seed of the random generator sampling #n_frames_per_sequence
            random frames per sequence.
        sort_frames: Enable frame annotations sorting to group frames from the
            same sequences together and order them by timestamps
        eval_batches: A list of batches that form the evaluation set;
            list of batch-sized lists of indices corresponding to __getitem__
            of this class, thus it can be used directly as a batch sampler.
        eval_batch_index:
            ( Optional[List[List[Union[Tuple[str, int, str], Tuple[str, int]]]] )
            A list of batches of frames described as (sequence_name, frame_idx)
            that can form the evaluation set, `eval_batches` will be set from this.

    """

    frame_annotations_type: ClassVar[
        Type[types.FrameAnnotation]
    ] = types.FrameAnnotation

    path_manager: Any = None
    frame_annotations_file: str = ""
    sequence_annotations_file: str = ""
    subset_lists_file: str = ""
    subsets: Optional[List[str]] = None
    limit_to: int = 0
    limit_sequences_to: int = 0
    pick_sequence: Tuple[str, ...] = ()
    exclude_sequence: Tuple[str, ...] = ()
    limit_category_to: Tuple[int, ...] = ()
    dataset_root: str = ""
    load_images: bool = True
    load_depths: bool = True
    load_depth_masks: bool = True
    load_masks: bool = True
    load_point_clouds: bool = False
    max_points: int = 0
    mask_images: bool = False
    mask_depths: bool = False
    image_height: Optional[int] = 800
    image_width: Optional[int] = 800
    box_crop: bool = True
    box_crop_mask_thr: float = 0.4
    box_crop_context: float = 0.3
    remove_empty_masks: bool = True
    n_frames_per_sequence: int = -1
    seed: int = 0
    sort_frames: bool = False
    eval_batches: Any = None
    eval_batch_index: Any = None
    # frame_annots: List[FrameAnnotsEntry] = field(init=False)
    # seq_annots: Dict[str, types.SequenceAnnotation] = field(init=False)

    def __post_init__(self) -> None:
        # pyre-fixme[16]: `JsonIndexDataset` has no attribute `subset_to_image_path`.
        self.subset_to_image_path = None
        self._load_frames()
        self._load_sequences()
        if self.sort_frames:
            self._sort_frames()
        self._load_subset_lists()
        self._filter_db()  # also computes sequence indices
        self._extract_and_set_eval_batches()
        logger.info(str(self))

    def _extract_and_set_eval_batches(self):
        """
        Sets eval_batches based on input eval_batch_index.
        """
        if self.eval_batch_index is not None:
            if self.eval_batches is not None:
                raise ValueError(
                    "Cannot define both eval_batch_index and eval_batches."
                )
            self.eval_batches = self.seq_frame_index_to_dataset_index(
                self.eval_batch_index
            )

    def join(self, other_datasets: Iterable[DatasetBase]) -> None:
        """
        Join the dataset with other JsonIndexDataset objects.

        Args:
            other_datasets: A list of JsonIndexDataset objects to be joined
                into the current dataset.
        """
        if not all(isinstance(d, JsonIndexDataset) for d in other_datasets):
            raise ValueError("This function can only join a list of JsonIndexDataset")
        # pyre-ignore[16]
        self.frame_annots.extend([fa for d in other_datasets for fa in d.frame_annots])
        # pyre-ignore[16]
        self.seq_annots.update(
            # https://gist.github.com/treyhunner/f35292e676efa0be1728
            functools.reduce(
                lambda a, b: {**a, **b},
                [d.seq_annots for d in other_datasets],  # pyre-ignore[16]
            )
        )
        all_eval_batches = [
            self.eval_batches,
            # pyre-ignore
            *[d.eval_batches for d in other_datasets],
        ]
        if not (
            all(ba is None for ba in all_eval_batches)
            or all(ba is not None for ba in all_eval_batches)
        ):
            raise ValueError(
                "When joining datasets, either all joined datasets have to have their"
                " eval_batches defined, or all should have their eval batches undefined."
            )
        if self.eval_batches is not None:
            self.eval_batches = sum(all_eval_batches, [])
        self._invalidate_indexes(filter_seq_annots=True)

    def is_filtered(self) -> bool:
        """
        Returns `True` in case the dataset has been filtered and thus some frame annotations
        stored on the disk might be missing in the dataset object.

        Returns:
            is_filtered: `True` if the dataset has been filtered, else `False`.
        """
        return (
            self.remove_empty_masks
            or self.limit_to > 0
            or self.limit_sequences_to > 0
            or len(self.pick_sequence) > 0
            or len(self.exclude_sequence) > 0
            or len(self.limit_category_to) > 0
            or self.n_frames_per_sequence > 0
        )

    def seq_frame_index_to_dataset_index(
        self,
        seq_frame_index: List[List[Union[Tuple[str, int, str], Tuple[str, int]]]],
        allow_missing_indices: bool = False,
        remove_missing_indices: bool = False,
        suppress_missing_index_warning: bool = True,
    ) -> List[List[Union[Optional[int], int]]]:
        """
        Obtain indices into the dataset object given a list of frame ids.

        Args:
            seq_frame_index: The list of frame ids specified as
                `List[List[Tuple[sequence_name:str, frame_number:int]]]`. Optionally,
                Image paths relative to the dataset_root can be stored specified as well:
                `List[List[Tuple[sequence_name:str, frame_number:int, image_path:str]]]`
            allow_missing_indices: If `False`, throws an IndexError upon reaching the first
                entry from `seq_frame_index` which is missing in the dataset.
                Otherwise, depending on `remove_missing_indices`, either returns `None`
                in place of missing entries or removes the indices of missing entries.
            remove_missing_indices: Active when `allow_missing_indices=True`.
                If `False`, returns `None` in place of `seq_frame_index` entries that
                are not present in the dataset.
                If `True` removes missing indices from the returned indices.
            suppress_missing_index_warning:
                Active if `allow_missing_indices==True`. Suppressess a warning message
                in case an entry from `seq_frame_index` is missing in the dataset
                (expected in certain cases - e.g. when setting
                `self.remove_empty_masks=True`).

        Returns:
            dataset_idx: Indices of dataset entries corresponding to`seq_frame_index`.
        """
        _dataset_seq_frame_n_index = {
            seq: {
                # pyre-ignore[16]
                self.frame_annots[idx]["frame_annotation"].frame_number: idx
                for idx in seq_idx
            }
            # pyre-ignore[16]
            for seq, seq_idx in self._seq_to_idx.items()
        }

        def _get_dataset_idx(
            seq_name: str, frame_no: int, path: Optional[str] = None
        ) -> Optional[int]:
            idx_seq = _dataset_seq_frame_n_index.get(seq_name, None)
            idx = idx_seq.get(frame_no, None) if idx_seq is not None else None
            if idx is None:
                msg = (
                    f"sequence_name={seq_name} / frame_number={frame_no}"
                    " not in the dataset!"
                )
                if not allow_missing_indices:
                    raise IndexError(msg)
                if not suppress_missing_index_warning:
                    warnings.warn(msg)
                return idx
            if path is not None:
                # Check that the loaded frame path is consistent
                # with the one stored in self.frame_annots.
                assert os.path.normpath(
                    # pyre-ignore[16]
                    self.frame_annots[idx]["frame_annotation"].image.path
                ) == os.path.normpath(
                    path
                ), f"Inconsistent frame indices {seq_name, frame_no, path}."
            return idx

        dataset_idx = [
            [_get_dataset_idx(*b) for b in batch]  # pyre-ignore [6]
            for batch in seq_frame_index
        ]

        if allow_missing_indices and remove_missing_indices:
            # remove all None indices, and also batches with only None entries
            valid_dataset_idx = [
                [b for b in batch if b is not None] for batch in dataset_idx
            ]
            return [  # pyre-ignore[7]
                batch for batch in valid_dataset_idx if len(batch) > 0
            ]

        return dataset_idx

    def subset_from_frame_index(
        self,
        frame_index: List[Union[Tuple[str, int], Tuple[str, int, str]]],
        allow_missing_indices: bool = True,
    ) -> "JsonIndexDataset":
        """
        Generate a dataset subset given the list of frames specified in `frame_index`.

        Args:
            frame_index: The list of frame indentifiers (as stored in the metadata)
                specified as `List[Tuple[sequence_name:str, frame_number:int]]`. Optionally,
                Image paths relative to the dataset_root can be stored specified as well:
                `List[Tuple[sequence_name:str, frame_number:int, image_path:str]]`,
                in the latter case, if imaga_path do not match the stored paths, an error
                is raised.
            allow_missing_indices: If `False`, throws an IndexError upon reaching the first
                entry from `frame_index` which is missing in the dataset.
                Otherwise, generates a subset consisting of frames entries that actually
                exist in the dataset.
        """
        # Get the indices into the frame annots.
        dataset_indices = self.seq_frame_index_to_dataset_index(
            [frame_index],
            allow_missing_indices=self.is_filtered() and allow_missing_indices,
        )[0]
        valid_dataset_indices = [i for i in dataset_indices if i is not None]

        # Deep copy the whole dataset except frame_annots, which are large so we
        # deep copy only the requested subset of frame_annots.
        memo = {id(self.frame_annots): None}  # pyre-ignore[16]
        dataset_new = copy.deepcopy(self, memo)
        dataset_new.frame_annots = copy.deepcopy(
            [self.frame_annots[i] for i in valid_dataset_indices]
        )

        # This will kill all unneeded sequence annotations.
        dataset_new._invalidate_indexes(filter_seq_annots=True)

        # Finally annotate the frame annotations with the name of the subset
        # stored in meta.
        for frame_annot in dataset_new.frame_annots:
            frame_annotation = frame_annot["frame_annotation"]
            if frame_annotation.meta is not None:
                frame_annot["subset"] = frame_annotation.meta.get("frame_type", None)

        # A sanity check - this will crash in case some entries from frame_index are missing
        # in dataset_new.
        valid_frame_index = [
            fi for fi, di in zip(frame_index, dataset_indices) if di is not None
        ]
        dataset_new.seq_frame_index_to_dataset_index(
            [valid_frame_index], allow_missing_indices=False
        )

        return dataset_new

    def __str__(self) -> str:
        # pyre-ignore[16]
        return f"JsonIndexDataset #frames={len(self.frame_annots)}"

    def __len__(self) -> int:
        # pyre-ignore[16]
        return len(self.frame_annots)

    def _get_frame_type(self, entry: FrameAnnotsEntry) -> Optional[str]:
        return entry["subset"]

    def get_all_train_cameras(self) -> CamerasBase:
        """
        Returns the cameras corresponding to all the known frames.
        """
        logger.info("Loading all train cameras.")
        cameras = []
        # pyre-ignore[16]
        for frame_idx, frame_annot in enumerate(tqdm(self.frame_annots)):
            frame_type = self._get_frame_type(frame_annot)
            if frame_type is None:
                raise ValueError("subsets not loaded")
            if is_known_frame_scalar(frame_type):
                cameras.append(self[frame_idx].camera)
        return join_cameras_as_batch(cameras)

    def __getitem__(self, index) -> FrameData:
        # pyre-ignore[16]
        if index >= len(self.frame_annots):
            raise IndexError(f"index {index} out of range {len(self.frame_annots)}")

        entry = self.frame_annots[index]["frame_annotation"]
        # pyre-ignore[16]
        point_cloud = self.seq_annots[entry.sequence_name].point_cloud
        frame_data = FrameData(
            frame_number=_safe_as_tensor(entry.frame_number, torch.long),
            frame_timestamp=_safe_as_tensor(entry.frame_timestamp, torch.float),
            sequence_name=entry.sequence_name,
            sequence_category=self.seq_annots[entry.sequence_name].category,
            camera_quality_score=_safe_as_tensor(
                self.seq_annots[entry.sequence_name].viewpoint_quality_score,
                torch.float,
            ),
            point_cloud_quality_score=_safe_as_tensor(
                point_cloud.quality_score, torch.float
            )
            if point_cloud is not None
            else None,
        )

        # The rest of the fields are optional
        frame_data.frame_type = self._get_frame_type(self.frame_annots[index])

        (
            frame_data.fg_probability,
            frame_data.mask_path,
            frame_data.bbox_xywh,
            clamp_bbox_xyxy,
            frame_data.crop_bbox_xywh,
        ) = self._load_crop_fg_probability(entry)

        scale = 1.0
        if self.load_images and entry.image is not None:
            # original image size
            frame_data.image_size_hw = _safe_as_tensor(entry.image.size, torch.long)

            (
                frame_data.image_rgb,
                frame_data.image_path,
                frame_data.mask_crop,
                scale,
            ) = self._load_crop_images(
                entry, frame_data.fg_probability, clamp_bbox_xyxy
            )

        if self.load_depths and entry.depth is not None:
            (
                frame_data.depth_map,
                frame_data.depth_path,
                frame_data.depth_mask,
            ) = self._load_mask_depth(entry, clamp_bbox_xyxy, frame_data.fg_probability)

        if entry.viewpoint is not None:
            frame_data.camera = self._get_pytorch3d_camera(
                entry,
                scale,
                clamp_bbox_xyxy,
            )

        if self.load_point_clouds and point_cloud is not None:
            pcl_path = self._fix_point_cloud_path(point_cloud.path)
            frame_data.sequence_point_cloud = _load_pointcloud(
                self._local_path(pcl_path), max_points=self.max_points
            )
            frame_data.sequence_point_cloud_path = pcl_path

        return frame_data

    def _fix_point_cloud_path(self, path: str) -> str:
        """
        Fix up a point cloud path from the dataset.
        Some files in Co3Dv2 have an accidental absolute path stored.
        """
        unwanted_prefix = (
            "/large_experiments/p3/replay/datasets/co3d/co3d45k_220512/export_v23/"
        )
        if path.startswith(unwanted_prefix):
            path = path[len(unwanted_prefix) :]
        return os.path.join(self.dataset_root, path)

    def _load_crop_fg_probability(
        self, entry: types.FrameAnnotation
    ) -> Tuple[
        Optional[torch.Tensor],
        Optional[str],
        Optional[torch.Tensor],
        Optional[torch.Tensor],
        Optional[torch.Tensor],
    ]:
        fg_probability = None
        full_path = None
        bbox_xywh = None
        clamp_bbox_xyxy = None
        crop_box_xywh = None

        if (self.load_masks or self.box_crop) and entry.mask is not None:
            full_path = os.path.join(self.dataset_root, entry.mask.path)
            mask = _load_mask(self._local_path(full_path))

            if mask.shape[-2:] != entry.image.size:
                raise ValueError(
                    f"bad mask size: {mask.shape[-2:]} vs {entry.image.size}!"
                )

            bbox_xywh = torch.tensor(_get_bbox_from_mask(mask, self.box_crop_mask_thr))

            if self.box_crop:
                clamp_bbox_xyxy = _clamp_box_to_image_bounds_and_round(
                    _get_clamp_bbox(
                        bbox_xywh,
                        image_path=entry.image.path,
                        box_crop_context=self.box_crop_context,
                    ),
                    image_size_hw=tuple(mask.shape[-2:]),
                )
                crop_box_xywh = _bbox_xyxy_to_xywh(clamp_bbox_xyxy)

                mask = _crop_around_box(mask, clamp_bbox_xyxy, full_path)

            fg_probability, _, _ = self._resize_image(mask, mode="nearest")

        return fg_probability, full_path, bbox_xywh, clamp_bbox_xyxy, crop_box_xywh

    def _load_crop_images(
        self,
        entry: types.FrameAnnotation,
        fg_probability: Optional[torch.Tensor],
        clamp_bbox_xyxy: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, str, torch.Tensor, float]:
        assert self.dataset_root is not None and entry.image is not None
        path = os.path.join(self.dataset_root, entry.image.path)
        image_rgb = _load_image(self._local_path(path))

        if image_rgb.shape[-2:] != entry.image.size:
            raise ValueError(
                f"bad image size: {image_rgb.shape[-2:]} vs {entry.image.size}!"
            )

        if self.box_crop:
            assert clamp_bbox_xyxy is not None
            image_rgb = _crop_around_box(image_rgb, clamp_bbox_xyxy, path)

        image_rgb, scale, mask_crop = self._resize_image(image_rgb)

        if self.mask_images:
            assert fg_probability is not None
            image_rgb *= fg_probability

        return image_rgb, path, mask_crop, scale

    def _load_mask_depth(
        self,
        entry: types.FrameAnnotation,
        clamp_bbox_xyxy: Optional[torch.Tensor],
        fg_probability: Optional[torch.Tensor],
    ) -> Tuple[torch.Tensor, str, torch.Tensor]:
        entry_depth = entry.depth
        assert entry_depth is not None
        path = os.path.join(self.dataset_root, entry_depth.path)
        depth_map = _load_depth(self._local_path(path), entry_depth.scale_adjustment)

        if self.box_crop:
            assert clamp_bbox_xyxy is not None
            depth_bbox_xyxy = _rescale_bbox(
                clamp_bbox_xyxy, entry.image.size, depth_map.shape[-2:]
            )
            depth_map = _crop_around_box(depth_map, depth_bbox_xyxy, path)

        depth_map, _, _ = self._resize_image(depth_map, mode="nearest")

        if self.mask_depths:
            assert fg_probability is not None
            depth_map *= fg_probability

        if self.load_depth_masks:
            assert entry_depth.mask_path is not None
            mask_path = os.path.join(self.dataset_root, entry_depth.mask_path)
            depth_mask = _load_depth_mask(self._local_path(mask_path))

            if self.box_crop:
                assert clamp_bbox_xyxy is not None
                depth_mask_bbox_xyxy = _rescale_bbox(
                    clamp_bbox_xyxy, entry.image.size, depth_mask.shape[-2:]
                )
                depth_mask = _crop_around_box(
                    depth_mask, depth_mask_bbox_xyxy, mask_path
                )

            depth_mask, _, _ = self._resize_image(depth_mask, mode="nearest")
        else:
            depth_mask = torch.ones_like(depth_map)

        return depth_map, path, depth_mask

    def _get_pytorch3d_camera(
        self,
        entry: types.FrameAnnotation,
        scale: float,
        clamp_bbox_xyxy: Optional[torch.Tensor],
    ) -> PerspectiveCameras:
        entry_viewpoint = entry.viewpoint
        assert entry_viewpoint is not None
        # principal point and focal length
        principal_point = torch.tensor(
            entry_viewpoint.principal_point, dtype=torch.float
        )
        focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)

        half_image_size_wh_orig = (
            torch.tensor(list(reversed(entry.image.size)), dtype=torch.float) / 2.0
        )

        # first, we convert from the dataset's NDC convention to pixels
        format = entry_viewpoint.intrinsics_format
        if format.lower() == "ndc_norm_image_bounds":
            # this is e.g. currently used in CO3D for storing intrinsics
            rescale = half_image_size_wh_orig
        elif format.lower() == "ndc_isotropic":
            rescale = half_image_size_wh_orig.min()
        else:
            raise ValueError(f"Unknown intrinsics format: {format}")

        # principal point and focal length in pixels
        principal_point_px = half_image_size_wh_orig - principal_point * rescale
        focal_length_px = focal_length * rescale
        if self.box_crop:
            assert clamp_bbox_xyxy is not None
            principal_point_px -= clamp_bbox_xyxy[:2]

        # now, convert from pixels to PyTorch3D v0.5+ NDC convention
        if self.image_height is None or self.image_width is None:
            out_size = list(reversed(entry.image.size))
        else:
            out_size = [self.image_width, self.image_height]

        half_image_size_output = torch.tensor(out_size, dtype=torch.float) / 2.0
        half_min_image_size_output = half_image_size_output.min()

        # rescaled principal point and focal length in ndc
        principal_point = (
            half_image_size_output - principal_point_px * scale
        ) / half_min_image_size_output
        focal_length = focal_length_px * scale / half_min_image_size_output

        return PerspectiveCameras(
            focal_length=focal_length[None],
            principal_point=principal_point[None],
            R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None],
            T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None],
        )

    def _load_frames(self) -> None:
        logger.info(f"Loading Co3D frames from {self.frame_annotations_file}.")
        local_file = self._local_path(self.frame_annotations_file)
        with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
            frame_annots_list = types.load_dataclass(
                zipfile, List[self.frame_annotations_type]
            )
        if not frame_annots_list:
            raise ValueError("Empty dataset!")
        # pyre-ignore[16]
        self.frame_annots = [
            FrameAnnotsEntry(frame_annotation=a, subset=None) for a in frame_annots_list
        ]

    def _load_sequences(self) -> None:
        logger.info(f"Loading Co3D sequences from {self.sequence_annotations_file}.")
        local_file = self._local_path(self.sequence_annotations_file)
        with gzip.open(local_file, "rt", encoding="utf8") as zipfile:
            seq_annots = types.load_dataclass(zipfile, List[types.SequenceAnnotation])
        if not seq_annots:
            raise ValueError("Empty sequences file!")
        # pyre-ignore[16]
        self.seq_annots = {entry.sequence_name: entry for entry in seq_annots}

    def _load_subset_lists(self) -> None:
        logger.info(f"Loading Co3D subset lists from {self.subset_lists_file}.")
        if not self.subset_lists_file:
            return

        with open(self._local_path(self.subset_lists_file), "r") as f:
            subset_to_seq_frame = json.load(f)

        frame_path_to_subset = {
            path: subset
            for subset, frames in subset_to_seq_frame.items()
            for _, _, path in frames
        }
        # pyre-ignore[16]
        for frame in self.frame_annots:
            frame["subset"] = frame_path_to_subset.get(
                frame["frame_annotation"].image.path, None
            )
            if frame["subset"] is None:
                warnings.warn(
                    "Subset lists are given but don't include "
                    + frame["frame_annotation"].image.path
                )

    def _sort_frames(self) -> None:
        # Sort frames to have them grouped by sequence, ordered by timestamp
        # pyre-ignore[16]
        self.frame_annots = sorted(
            self.frame_annots,
            key=lambda f: (
                f["frame_annotation"].sequence_name,
                f["frame_annotation"].frame_timestamp or 0,
            ),
        )

    def _filter_db(self) -> None:
        if self.remove_empty_masks:
            logger.info("Removing images with empty masks.")
            # pyre-ignore[16]
            old_len = len(self.frame_annots)

            msg = "remove_empty_masks needs every MaskAnnotation.mass to be set."

            def positive_mass(frame_annot: types.FrameAnnotation) -> bool:
                mask = frame_annot.mask
                if mask is None:
                    return False
                if mask.mass is None:
                    raise ValueError(msg)
                return mask.mass > 1

            self.frame_annots = [
                frame
                for frame in self.frame_annots
                if positive_mass(frame["frame_annotation"])
            ]
            logger.info("... filtered %d -> %d" % (old_len, len(self.frame_annots)))

        # this has to be called after joining with categories!!
        subsets = self.subsets
        if subsets:
            if not self.subset_lists_file:
                raise ValueError(
                    "Subset filter is on but subset_lists_file was not given"
                )

            logger.info(f"Limiting Co3D dataset to the '{subsets}' subsets.")

            # truncate the list of subsets to the valid one
            self.frame_annots = [
                entry for entry in self.frame_annots if entry["subset"] in subsets
            ]
            if len(self.frame_annots) == 0:
                raise ValueError(f"There are no frames in the '{subsets}' subsets!")

            self._invalidate_indexes(filter_seq_annots=True)

        if len(self.limit_category_to) > 0:
            logger.info(f"Limiting dataset to categories: {self.limit_category_to}")
            # pyre-ignore[16]
            self.seq_annots = {
                name: entry
                for name, entry in self.seq_annots.items()
                if entry.category in self.limit_category_to
            }

        # sequence filters
        for prefix in ("pick", "exclude"):
            orig_len = len(self.seq_annots)
            attr = f"{prefix}_sequence"
            arr = getattr(self, attr)
            if len(arr) > 0:
                logger.info(f"{attr}: {str(arr)}")
                self.seq_annots = {
                    name: entry
                    for name, entry in self.seq_annots.items()
                    if (name in arr) == (prefix == "pick")
                }
                logger.info("... filtered %d -> %d" % (orig_len, len(self.seq_annots)))

        if self.limit_sequences_to > 0:
            self.seq_annots = dict(
                islice(self.seq_annots.items(), self.limit_sequences_to)
            )

        # retain only frames from retained sequences
        self.frame_annots = [
            f
            for f in self.frame_annots
            if f["frame_annotation"].sequence_name in self.seq_annots
        ]

        self._invalidate_indexes()

        if self.n_frames_per_sequence > 0:
            logger.info(f"Taking max {self.n_frames_per_sequence} per sequence.")
            keep_idx = []
            # pyre-ignore[16]
            for seq, seq_indices in self._seq_to_idx.items():
                # infer the seed from the sequence name, this is reproducible
                # and makes the selection differ for different sequences
                seed = _seq_name_to_seed(seq) + self.seed
                seq_idx_shuffled = random.Random(seed).sample(
                    sorted(seq_indices), len(seq_indices)
                )
                keep_idx.extend(seq_idx_shuffled[: self.n_frames_per_sequence])

            logger.info(
                "... filtered %d -> %d" % (len(self.frame_annots), len(keep_idx))
            )
            self.frame_annots = [self.frame_annots[i] for i in keep_idx]
            self._invalidate_indexes(filter_seq_annots=False)
            # sequences are not decimated, so self.seq_annots is valid

        if self.limit_to > 0 and self.limit_to < len(self.frame_annots):
            logger.info(
                "limit_to: filtered %d -> %d" % (len(self.frame_annots), self.limit_to)
            )
            self.frame_annots = self.frame_annots[: self.limit_to]
            self._invalidate_indexes(filter_seq_annots=True)

    def _invalidate_indexes(self, filter_seq_annots: bool = False) -> None:
        # update _seq_to_idx and filter seq_meta according to frame_annots change
        # if filter_seq_annots, also uldates seq_annots based on the changed _seq_to_idx
        self._invalidate_seq_to_idx()

        if filter_seq_annots:
            # pyre-ignore[16]
            self.seq_annots = {
                k: v
                for k, v in self.seq_annots.items()
                # pyre-ignore[16]
                if k in self._seq_to_idx
            }

    def _invalidate_seq_to_idx(self) -> None:
        seq_to_idx = defaultdict(list)
        # pyre-ignore[16]
        for idx, entry in enumerate(self.frame_annots):
            seq_to_idx[entry["frame_annotation"].sequence_name].append(idx)
        # pyre-ignore[16]
        self._seq_to_idx = seq_to_idx

    def _resize_image(
        self, image, mode="bilinear"
    ) -> Tuple[torch.Tensor, float, torch.Tensor]:
        image_height, image_width = self.image_height, self.image_width
        if image_height is None or image_width is None:
            # skip the resizing
            imre_ = torch.from_numpy(image)
            return imre_, 1.0, torch.ones_like(imre_[:1])
        # takes numpy array, returns pytorch tensor
        minscale = min(
            image_height / image.shape[-2],
            image_width / image.shape[-1],
        )
        imre = torch.nn.functional.interpolate(
            torch.from_numpy(image)[None],
            scale_factor=minscale,
            mode=mode,
            align_corners=False if mode == "bilinear" else None,
            recompute_scale_factor=True,
        )[0]
        # pyre-fixme[19]: Expected 1 positional argument.
        imre_ = torch.zeros(image.shape[0], self.image_height, self.image_width)
        imre_[:, 0 : imre.shape[1], 0 : imre.shape[2]] = imre
        # pyre-fixme[6]: For 2nd param expected `int` but got `Optional[int]`.
        # pyre-fixme[6]: For 3rd param expected `int` but got `Optional[int]`.
        mask = torch.zeros(1, self.image_height, self.image_width)
        mask[:, 0 : imre.shape[1], 0 : imre.shape[2]] = 1.0
        return imre_, minscale, mask

    def _local_path(self, path: str) -> str:
        if self.path_manager is None:
            return path
        return self.path_manager.get_local_path(path)

    def get_frame_numbers_and_timestamps(
        self, idxs: Sequence[int]
    ) -> List[Tuple[int, float]]:
        out: List[Tuple[int, float]] = []
        for idx in idxs:
            # pyre-ignore[16]
            frame_annotation = self.frame_annots[idx]["frame_annotation"]
            out.append(
                (frame_annotation.frame_number, frame_annotation.frame_timestamp)
            )
        return out

    def category_to_sequence_names(self) -> Dict[str, List[str]]:
        c2seq = defaultdict(list)
        # pyre-ignore
        for sequence_name, sa in self.seq_annots.items():
            c2seq[sa.category].append(sequence_name)
        return dict(c2seq)

    def get_eval_batches(self) -> Optional[List[List[int]]]:
        return self.eval_batches


def _seq_name_to_seed(seq_name) -> int:
    return int(hashlib.sha1(seq_name.encode("utf-8")).hexdigest(), 16)


def _load_image(path) -> np.ndarray:
    with Image.open(path) as pil_im:
        im = np.array(pil_im.convert("RGB"))
    im = im.transpose((2, 0, 1))
    im = im.astype(np.float32) / 255.0
    return im


def _load_16big_png_depth(depth_png) -> np.ndarray:
    with Image.open(depth_png) as depth_pil:
        # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
        # we cast it to uint16, then reinterpret as float16, then cast to float32
        depth = (
            np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
            .astype(np.float32)
            .reshape((depth_pil.size[1], depth_pil.size[0]))
        )
    return depth


def _load_1bit_png_mask(file: str) -> np.ndarray:
    with Image.open(file) as pil_im:
        mask = (np.array(pil_im.convert("L")) > 0.0).astype(np.float32)
    return mask


def _load_depth_mask(path: str) -> np.ndarray:
    if not path.lower().endswith(".png"):
        raise ValueError('unsupported depth mask file name "%s"' % path)
    m = _load_1bit_png_mask(path)
    return m[None]  # fake feature channel


def _load_depth(path, scale_adjustment) -> np.ndarray:
    if not path.lower().endswith(".png"):
        raise ValueError('unsupported depth file name "%s"' % path)

    d = _load_16big_png_depth(path) * scale_adjustment
    d[~np.isfinite(d)] = 0.0
    return d[None]  # fake feature channel


def _load_mask(path) -> np.ndarray:
    with Image.open(path) as pil_im:
        mask = np.array(pil_im)
    mask = mask.astype(np.float32) / 255.0
    return mask[None]  # fake feature channel


def _get_1d_bounds(arr) -> Tuple[int, int]:
    nz = np.flatnonzero(arr)
    return nz[0], nz[-1] + 1


def _get_bbox_from_mask(
    mask, thr, decrease_quant: float = 0.05
) -> Tuple[int, int, int, int]:
    # bbox in xywh
    masks_for_box = np.zeros_like(mask)
    while masks_for_box.sum() <= 1.0:
        masks_for_box = (mask > thr).astype(np.float32)
        thr -= decrease_quant
    if thr <= 0.0:
        warnings.warn(f"Empty masks_for_bbox (thr={thr}) => using full image.")

    x0, x1 = _get_1d_bounds(masks_for_box.sum(axis=-2))
    y0, y1 = _get_1d_bounds(masks_for_box.sum(axis=-1))

    return x0, y0, x1 - x0, y1 - y0


def _get_clamp_bbox(
    bbox: torch.Tensor,
    box_crop_context: float = 0.0,
    image_path: str = "",
) -> torch.Tensor:
    # box_crop_context: rate of expansion for bbox
    # returns possibly expanded bbox xyxy as float

    bbox = bbox.clone()  # do not edit bbox in place

    # increase box size
    if box_crop_context > 0.0:
        c = box_crop_context
        bbox = bbox.float()
        bbox[0] -= bbox[2] * c / 2
        bbox[1] -= bbox[3] * c / 2
        bbox[2] += bbox[2] * c
        bbox[3] += bbox[3] * c

    if (bbox[2:] <= 1.0).any():
        raise ValueError(
            f"squashed image {image_path}!! The bounding box contains no pixels."
        )

    bbox[2:] = torch.clamp(bbox[2:], 2)  # set min height, width to 2 along both axes
    bbox_xyxy = _bbox_xywh_to_xyxy(bbox, clamp_size=2)

    return bbox_xyxy


def _crop_around_box(tensor, bbox, impath: str = ""):
    # bbox is xyxy, where the upper bound is corrected with +1
    bbox = _clamp_box_to_image_bounds_and_round(
        bbox,
        image_size_hw=tensor.shape[-2:],
    )
    tensor = tensor[..., bbox[1] : bbox[3], bbox[0] : bbox[2]]
    assert all(c > 0 for c in tensor.shape), f"squashed image {impath}"
    return tensor


def _clamp_box_to_image_bounds_and_round(
    bbox_xyxy: torch.Tensor,
    image_size_hw: Tuple[int, int],
) -> torch.LongTensor:
    bbox_xyxy = bbox_xyxy.clone()
    bbox_xyxy[[0, 2]] = torch.clamp(bbox_xyxy[[0, 2]], 0, image_size_hw[-1])
    bbox_xyxy[[1, 3]] = torch.clamp(bbox_xyxy[[1, 3]], 0, image_size_hw[-2])
    if not isinstance(bbox_xyxy, torch.LongTensor):
        bbox_xyxy = bbox_xyxy.round().long()
    return bbox_xyxy  # pyre-ignore [7]


def _rescale_bbox(bbox: torch.Tensor, orig_res, new_res) -> torch.Tensor:
    assert bbox is not None
    assert np.prod(orig_res) > 1e-8
    # average ratio of dimensions
    rel_size = (new_res[0] / orig_res[0] + new_res[1] / orig_res[1]) / 2.0
    return bbox * rel_size


def _bbox_xyxy_to_xywh(xyxy: torch.Tensor) -> torch.Tensor:
    wh = xyxy[2:] - xyxy[:2]
    xywh = torch.cat([xyxy[:2], wh])
    return xywh


def _bbox_xywh_to_xyxy(
    xywh: torch.Tensor, clamp_size: Optional[int] = None
) -> torch.Tensor:
    xyxy = xywh.clone()
    if clamp_size is not None:
        xyxy[2:] = torch.clamp(xyxy[2:], clamp_size)
    xyxy[2:] += xyxy[:2]
    return xyxy


def _safe_as_tensor(data, dtype):
    if data is None:
        return None
    return torch.tensor(data, dtype=dtype)


# NOTE this cache is per-worker; they are implemented as processes.
# each batch is loaded and collated by a single worker;
# since sequences tend to co-occur within batches, this is useful.
@functools.lru_cache(maxsize=256)
def _load_pointcloud(pcl_path: Union[str, Path], max_points: int = 0) -> Pointclouds:
    pcl = IO().load_pointcloud(pcl_path)
    if max_points > 0:
        pcl = pcl.subsample(max_points)

    return pcl