File size: 3,623 Bytes
cfb7702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
name: ${basename:${dataset.scene}}
tag: ""
seed: 42

dataset:
  name: ortho
  root_dir: /home/xiaoxiao/Workplace/wonder3Dplus/outputs/joint-twice/aigc/cropsize-224-cfg1.0
  cam_pose_dir: null
  scene: scene_name
  imSize: [1024, 1024]  # should use larger res, otherwise the exported mesh has wrong colors
  camera_type: ortho
  apply_mask: true
  camera_params: null
  view_weights: [1.0, 0.8, 0.2, 1.0, 0.4, 0.7]  #['front', 'front_right', 'right', 'back', 'left', 'front_left']
  # view_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 

model:
  name: neus
  radius: 1.0
  num_samples_per_ray: 1024
  train_num_rays: 256
  max_train_num_rays: 8192
  grid_prune: true
  grid_prune_occ_thre: 0.001
  dynamic_ray_sampling: true
  batch_image_sampling: true
  randomized: true
  ray_chunk: 2048
  cos_anneal_end: 20000
  learned_background: false
  background_color: black
  variance:
    init_val: 0.3
    modulate: false
  geometry:
    name: volume-sdf
    radius: ${model.radius}
    feature_dim: 13
    grad_type: finite_difference
    finite_difference_eps: progressive
    isosurface:
      method: mc
      resolution: 192
      chunk: 2097152
      threshold: 0.
    xyz_encoding_config:
      otype: ProgressiveBandHashGrid
      n_levels: 10 # 12 modify
      n_features_per_level: 2
      log2_hashmap_size: 19
      base_resolution: 32
      per_level_scale: 1.3195079107728942
      include_xyz: true
      start_level: 4
      start_step: 0
      update_steps: 1000
    mlp_network_config:
      otype: VanillaMLP
      activation: ReLU
      output_activation: none
      n_neurons: 64
      n_hidden_layers: 1
      sphere_init: true
      sphere_init_radius: 0.5
      weight_norm: true
  texture:
    name: volume-radiance
    input_feature_dim: ${add:${model.geometry.feature_dim},3} # surface normal as additional input
    dir_encoding_config:
      otype: SphericalHarmonics
      degree: 4
    mlp_network_config:
      otype: VanillaMLP
      activation: ReLU
      output_activation: none
      n_neurons: 64
      n_hidden_layers: 2
    color_activation: sigmoid

system:
  name: ortho-neus-system
  loss:
    lambda_rgb_mse: 0.5
    lambda_rgb_l1: 0.
    lambda_mask: 1.0
    lambda_eikonal: 0.2  # cannot be too large, will cause holes to thin objects
    lambda_normal: 1.0  # cannot be too large
    lambda_3d_normal_smooth: 1.0
    # lambda_curvature: [0, 0.0, 1.e-4, 1000] # topology warmup
    lambda_curvature: 0.
    lambda_sparsity: 0.5
    lambda_distortion: 0.0
    lambda_distortion_bg: 0.0
    lambda_opaque: 0.0
    sparsity_scale: 100.0
    geo_aware: true
    rgb_p_ratio: 0.8
    normal_p_ratio: 0.8
    mask_p_ratio: 0.9
  optimizer:
    name: AdamW
    args:
      lr: 0.01
      betas: [0.9, 0.99]
      eps: 1.e-15
    params:
      geometry:
        lr: 0.001
      texture:
        lr: 0.01
      variance:
        lr: 0.001
  constant_steps: 500
  scheduler:
    name: SequentialLR
    interval: step
    milestones:
      - ${system.constant_steps}
    schedulers:
      - name: ConstantLR
        args:
          factor: 1.0
          total_iters: ${system.constant_steps}
      - name: ExponentialLR
        args:
          gamma: ${calc_exp_lr_decay_rate:0.1,${sub:${trainer.max_steps},${system.constant_steps}}}

checkpoint:
  save_top_k: -1
  every_n_train_steps: ${trainer.max_steps}

export:
  chunk_size: 2097152
  export_vertex_color: True
  ortho_scale: 1.35   #modify

trainer:
  max_steps: 3000
  log_every_n_steps: 100
  num_sanity_val_steps: 0
  val_check_interval: 4000
  limit_train_batches: 1.0
  limit_val_batches: 2
  enable_progress_bar: true
  precision: 16