Spaces:
Runtime error
Runtime error
File size: 4,174 Bytes
cfb7702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
from pathlib import Path
from mediapy import read_video, write_video
from scene.cameras import Camera
import numpy as np
from utils.general_utils import PILtoTorch
from utils.graphics_utils import fov2focal
WARNED = False
def loadCam(args, id, cam_info, resolution_scale):
orig_w, orig_h = cam_info.image.size
if args.resolution in [1, 2, 4, 8]:
resolution = round(orig_w / (resolution_scale * args.resolution)), round(
orig_h / (resolution_scale * args.resolution)
)
else: # should be a type that converts to float
if args.resolution == -1:
if orig_w > 1600:
global WARNED
if not WARNED:
print(
"[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
"If this is not desired, please explicitly specify '--resolution/-r' as 1"
)
WARNED = True
global_down = orig_w / 1600
else:
global_down = 1
else:
global_down = orig_w / args.resolution
scale = float(global_down) * float(resolution_scale)
resolution = (int(orig_w / scale), int(orig_h / scale))
resized_image_rgb = PILtoTorch(cam_info.image, resolution)
gt_image = resized_image_rgb[:3, ...]
loaded_mask = None
if resized_image_rgb.shape[1] == 4:
loaded_mask = resized_image_rgb[3:4, ...]
return Camera(
colmap_id=cam_info.uid,
R=cam_info.R,
T=cam_info.T,
FoVx=cam_info.FovX,
FoVy=cam_info.FovY,
image=gt_image,
gt_alpha_mask=loaded_mask,
image_name=cam_info.image_name,
uid=id,
data_device=args.data_device,
)
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
camera_list = []
for id, c in enumerate(cam_infos):
camera_list.append(loadCam(args, id, c, resolution_scale))
return camera_list
def camera_to_JSON(id, camera: Camera):
Rt = np.zeros((4, 4))
Rt[:3, :3] = camera.R.transpose()
Rt[:3, 3] = camera.T
Rt[3, 3] = 1.0
W2C = np.linalg.inv(Rt)
pos = W2C[:3, 3]
rot = W2C[:3, :3]
serializable_array_2d = [x.tolist() for x in rot]
camera_entry = {
"id": id,
"img_name": camera.image_name,
"width": camera.width,
"height": camera.height,
"position": pos.tolist(),
"rotation": serializable_array_2d,
"fy": fov2focal(camera.FovY, camera.height),
"fx": fov2focal(camera.FovX, camera.width),
}
return camera_entry
def get_c2w_from_up_and_look_at(
up,
look_at,
pos,
opengl=False,
):
up = up / np.linalg.norm(up)
z = look_at - pos
z = z / np.linalg.norm(z)
y = -up
x = np.cross(y, z)
x /= np.linalg.norm(x)
y = np.cross(z, x)
c2w = np.zeros([4, 4], dtype=np.float32)
c2w[:3, 0] = x
c2w[:3, 1] = y
c2w[:3, 2] = z
c2w[:3, 3] = pos
c2w[3, 3] = 1.0
# opencv to opengl
if opengl:
c2w[..., 1:3] *= -1
return c2w
def get_uniform_poses(num_frames, radius, elevation, opengl=False):
T = num_frames
azimuths = np.deg2rad(np.linspace(0, 360, T + 1)[:T])
elevations = np.full_like(azimuths, np.deg2rad(elevation))
cam_dists = np.full_like(azimuths, radius)
campos = np.stack(
[
cam_dists * np.cos(elevations) * np.cos(azimuths),
cam_dists * np.cos(elevations) * np.sin(azimuths),
cam_dists * np.sin(elevations),
],
axis=-1,
)
center = np.array([0, 0, 0], dtype=np.float32)
up = np.array([0, 0, 1], dtype=np.float32)
poses = []
for t in range(T):
poses.append(get_c2w_from_up_and_look_at(up, center, campos[t], opengl=opengl))
return np.stack(poses, axis=0)
|