Spaces:
Runtime error
Runtime error
import os | |
import json | |
import math | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torch.utils.data import Dataset, DataLoader, IterableDataset | |
import torchvision.transforms.functional as TF | |
import pytorch_lightning as pl | |
import datasets | |
from models.ray_utils import get_ray_directions | |
from utils.misc import get_rank | |
class BlenderDatasetBase: | |
def setup(self, config, split): | |
self.config = config | |
self.split = split | |
self.rank = get_rank() | |
self.has_mask = True | |
self.apply_mask = True | |
with open( | |
os.path.join(self.config.root_dir, f"transforms_{self.split}.json"), "r" | |
) as f: | |
meta = json.load(f) | |
if "w" in meta and "h" in meta: | |
W, H = int(meta["w"]), int(meta["h"]) | |
else: | |
W, H = 800, 800 | |
if "img_wh" in self.config: | |
w, h = self.config.img_wh | |
assert round(W / w * h) == H | |
elif "img_downscale" in self.config: | |
w, h = W // self.config.img_downscale, H // self.config.img_downscale | |
else: | |
raise KeyError("Either img_wh or img_downscale should be specified.") | |
self.w, self.h = w, h | |
self.img_wh = (self.w, self.h) | |
self.near, self.far = self.config.near_plane, self.config.far_plane | |
self.focal = ( | |
0.5 * w / math.tan(0.5 * meta["camera_angle_x"]) | |
) # scaled focal length | |
# ray directions for all pixels, same for all images (same H, W, focal) | |
self.directions = get_ray_directions( | |
self.w, self.h, self.focal, self.focal, self.w // 2, self.h // 2 | |
).to( | |
self.rank | |
) # (h, w, 3) | |
self.all_c2w, self.all_images, self.all_fg_masks = [], [], [] | |
for i, frame in enumerate(meta["frames"]): | |
c2w = torch.from_numpy(np.array(frame["transform_matrix"])[:3, :4]) | |
self.all_c2w.append(c2w) | |
img_path = os.path.join(self.config.root_dir, f"{frame['file_path']}.png") | |
img = Image.open(img_path) | |
img = img.resize(self.img_wh, Image.BICUBIC) | |
img = TF.to_tensor(img).permute(1, 2, 0) # (4, h, w) => (h, w, 4) | |
self.all_fg_masks.append(img[..., -1]) # (h, w) | |
self.all_images.append(img[..., :3]) | |
self.all_c2w, self.all_images, self.all_fg_masks = ( | |
torch.stack(self.all_c2w, dim=0).float().to(self.rank), | |
torch.stack(self.all_images, dim=0).float().to(self.rank), | |
torch.stack(self.all_fg_masks, dim=0).float().to(self.rank), | |
) | |
class BlenderDataset(Dataset, BlenderDatasetBase): | |
def __init__(self, config, split): | |
self.setup(config, split) | |
def __len__(self): | |
return len(self.all_images) | |
def __getitem__(self, index): | |
return {"index": index} | |
class BlenderIterableDataset(IterableDataset, BlenderDatasetBase): | |
def __init__(self, config, split): | |
self.setup(config, split) | |
def __iter__(self): | |
while True: | |
yield {} | |
class VideoNVSDataModule(pl.LightningDataModule): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
def setup(self, stage=None): | |
if stage in [None, "fit"]: | |
self.train_dataset = BlenderIterableDataset( | |
self.config, self.config.train_split | |
) | |
if stage in [None, "fit", "validate"]: | |
self.val_dataset = BlenderDataset(self.config, self.config.val_split) | |
if stage in [None, "test"]: | |
self.test_dataset = BlenderDataset(self.config, self.config.test_split) | |
if stage in [None, "predict"]: | |
self.predict_dataset = BlenderDataset(self.config, self.config.train_split) | |
def prepare_data(self): | |
pass | |
def general_loader(self, dataset, batch_size): | |
sampler = None | |
return DataLoader( | |
dataset, | |
num_workers=os.cpu_count(), | |
batch_size=batch_size, | |
pin_memory=True, | |
sampler=sampler, | |
) | |
def train_dataloader(self): | |
return self.general_loader(self.train_dataset, batch_size=1) | |
def val_dataloader(self): | |
return self.general_loader(self.val_dataset, batch_size=1) | |
def test_dataloader(self): | |
return self.general_loader(self.test_dataset, batch_size=1) | |
def predict_dataloader(self): | |
return self.general_loader(self.predict_dataset, batch_size=1) | |