heheyas
init
cfb7702
raw
history blame
31.8 kB
import logging
import math
from abc import abstractmethod
from typing import Iterable, List, Optional, Tuple, Union
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from functools import partial
# from torch.utils.checkpoint import checkpoint
checkpoint = partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
from ...modules.attention import SpatialTransformer
from ...modules.diffusionmodules.util import (
avg_pool_nd,
conv_nd,
linear,
normalization,
timestep_embedding,
zero_module,
)
from ...modules.video_attention import SpatialVideoTransformer
from ...util import exists
logpy = logging.getLogger(__name__)
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: Optional[int] = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x: th.Tensor) -> th.Tensor:
b, c, _ = x.shape
x = x.reshape(b, c, -1)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)
x = x + self.positional_embedding[None, :, :].to(x.dtype)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x: th.Tensor, emb: th.Tensor):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(
self,
x: th.Tensor,
emb: th.Tensor,
context: Optional[th.Tensor] = None,
image_only_indicator: Optional[th.Tensor] = None,
time_context: Optional[int] = None,
num_video_frames: Optional[int] = None,
):
from ...modules.diffusionmodules.video_model import VideoResBlock
for layer in self:
module = layer
if isinstance(module, TimestepBlock) and not isinstance(
module, VideoResBlock
):
x = layer(x, emb)
elif isinstance(module, VideoResBlock):
x = layer(x, emb, num_video_frames, image_only_indicator)
elif isinstance(module, SpatialVideoTransformer):
x = layer(
x,
context,
time_context,
num_video_frames,
image_only_indicator,
)
elif isinstance(module, SpatialTransformer):
x = layer(x, context)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
third_up: bool = False,
kernel_size: int = 3,
scale_factor: int = 2,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
self.third_up = third_up
self.scale_factor = scale_factor
if use_conv:
self.conv = conv_nd(
dims, self.channels, self.out_channels, kernel_size, padding=padding
)
def forward(self, x: th.Tensor) -> th.Tensor:
assert x.shape[1] == self.channels
if self.dims == 3:
t_factor = 1 if not self.third_up else self.scale_factor
x = F.interpolate(
x,
(
t_factor * x.shape[2],
x.shape[3] * self.scale_factor,
x.shape[4] * self.scale_factor,
),
mode="nearest",
)
else:
x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(
self,
channels: int,
use_conv: bool,
dims: int = 2,
out_channels: Optional[int] = None,
padding: int = 1,
third_down: bool = False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2))
if use_conv:
logpy.info(f"Building a Downsample layer with {dims} dims.")
logpy.info(
f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, "
f"kernel-size: 3, stride: {stride}, padding: {padding}"
)
if dims == 3:
logpy.info(f" --> Downsampling third axis (time): {third_down}")
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x: th.Tensor) -> th.Tensor:
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels: int,
emb_channels: int,
dropout: float,
out_channels: Optional[int] = None,
use_conv: bool = False,
use_scale_shift_norm: bool = False,
dims: int = 2,
use_checkpoint: bool = False,
up: bool = False,
down: bool = False,
kernel_size: int = 3,
exchange_temb_dims: bool = False,
skip_t_emb: bool = False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.exchange_temb_dims = exchange_temb_dims
if isinstance(kernel_size, Iterable):
padding = [k // 2 for k in kernel_size]
else:
padding = kernel_size // 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.skip_t_emb = skip_t_emb
self.emb_out_channels = (
2 * self.out_channels if use_scale_shift_norm else self.out_channels
)
if self.skip_t_emb:
logpy.info(f"Skipping timestep embedding in {self.__class__.__name__}")
assert not self.use_scale_shift_norm
self.emb_layers = None
self.exchange_temb_dims = False
else:
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
self.emb_out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(
dims,
self.out_channels,
self.out_channels,
kernel_size,
padding=padding,
)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, kernel_size, padding=padding
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor:
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
if self.use_checkpoint:
return checkpoint(self._forward, x, emb)
else:
return self._forward(x, emb)
def _forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor:
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
if self.skip_t_emb:
emb_out = th.zeros_like(h)
else:
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
if self.exchange_temb_dims:
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels: int,
num_heads: int = 1,
num_head_channels: int = -1,
use_checkpoint: bool = False,
use_new_attention_order: bool = False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x: th.Tensor, **kwargs) -> th.Tensor:
return checkpoint(self._forward, x)
def _forward(self, x: th.Tensor) -> th.Tensor:
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads: int):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv: th.Tensor) -> th.Tensor:
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads: int):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv: th.Tensor) -> th.Tensor:
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
class Timestep(nn.Module):
def __init__(self, dim: int):
super().__init__()
self.dim = dim
def forward(self, t: th.Tensor) -> th.Tensor:
return timestep_embedding(t, self.dim)
class UNetModel(nn.Module):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
def __init__(
self,
in_channels: int,
model_channels: int,
out_channels: int,
num_res_blocks: int,
attention_resolutions: int,
dropout: float = 0.0,
channel_mult: Union[List, Tuple] = (1, 2, 4, 8),
conv_resample: bool = True,
dims: int = 2,
num_classes: Optional[Union[int, str]] = None,
use_checkpoint: bool = False,
num_heads: int = -1,
num_head_channels: int = -1,
num_heads_upsample: int = -1,
use_scale_shift_norm: bool = False,
resblock_updown: bool = False,
transformer_depth: int = 1,
context_dim: Optional[int] = None,
disable_self_attentions: Optional[List[bool]] = None,
num_attention_blocks: Optional[List[int]] = None,
disable_middle_self_attn: bool = False,
disable_middle_transformer: bool = False,
use_linear_in_transformer: bool = False,
spatial_transformer_attn_type: str = "softmax",
adm_in_channels: Optional[int] = None,
):
super().__init__()
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert (
num_head_channels != -1
), "Either num_heads or num_head_channels has to be set"
if num_head_channels == -1:
assert (
num_heads != -1
), "Either num_heads or num_head_channels has to be set"
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(transformer_depth, int):
transformer_depth = len(channel_mult) * [transformer_depth]
transformer_depth_middle = transformer_depth[-1]
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError(
"provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult"
)
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(
map(
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
range(len(num_attention_blocks)),
)
)
logpy.info(
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set."
)
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
logpy.info("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "timestep":
self.label_emb = nn.Sequential(
Timestep(model_channels),
nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
),
)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if context_dim is not None and exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (
not exists(num_attention_blocks)
or nr < num_attention_blocks[level]
):
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth[level],
context_dim=context_dim,
disable_self_attn=disabled_sa,
use_linear=use_linear_in_transformer,
attn_type=spatial_transformer_attn_type,
use_checkpoint=use_checkpoint,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth_middle,
context_dim=context_dim,
disable_self_attn=disable_middle_self_attn,
use_linear=use_linear_in_transformer,
attn_type=spatial_transformer_attn_type,
use_checkpoint=use_checkpoint,
)
if not disable_middle_transformer
else th.nn.Identity(),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (
not exists(num_attention_blocks)
or i < num_attention_blocks[level]
):
layers.append(
SpatialTransformer(
ch,
num_heads,
dim_head,
depth=transformer_depth[level],
context_dim=context_dim,
disable_self_attn=disabled_sa,
use_linear=use_linear_in_transformer,
attn_type=spatial_transformer_attn_type,
use_checkpoint=use_checkpoint,
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
def forward(
self,
x: th.Tensor,
timesteps: Optional[th.Tensor] = None,
context: Optional[th.Tensor] = None,
y: Optional[th.Tensor] = None,
**kwargs,
) -> th.Tensor:
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
return self.out(h)