Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
# Lade dein Modell | |
model_path = "pokemon-model.keras" | |
model = tf.keras.models.load_model(model_path) | |
model.summary() # Check if the model architecture loaded matches the expected one | |
# Klassen Labels für deine vier Pokémon | |
labels = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree'] | |
def predict_pokemon(image): | |
# Bildvorverarbeitung | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
image = image.resize((150, 150)) # Anpassen der Bildgröße an das Modell | |
image = np.array(image) # Normalisieren der Pixelwerte | |
print(image.shape) | |
# Bild in das Modell einspeisen und Vorhersage treffen | |
prediction = model.predict(image[None, ...]) | |
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} | |
return confidences | |
# Gradio Interface definieren | |
input_image = gr.Image() | |
output_text = gr.Textbox(label="Predicted Pokemon") | |
iface = gr.Interface( | |
fn=predict_pokemon, | |
inputs=input_image, | |
outputs=gr.Label(), | |
title="Pokémon Classifier", | |
description="Upload an image of a Pokémon and see the model classify it!" | |
) | |
# Starte die Gradio-Schnittstelle | |
iface.launch() | |