Pokemon / app.py
heinini2's picture
Update app.py
1b04969 verified
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Lade dein Modell
model_path = "pokemon-model.keras"
model = tf.keras.models.load_model(model_path)
model.summary() # Check if the model architecture loaded matches the expected one
# Klassen Labels für deine vier Pokémon
labels = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree']
def predict_pokemon(image):
# Bildvorverarbeitung
image = Image.fromarray(image.astype('uint8'), 'RGB')
image = image.resize((150, 150)) # Anpassen der Bildgröße an das Modell
image = np.array(image) # Normalisieren der Pixelwerte
print(image.shape)
# Bild in das Modell einspeisen und Vorhersage treffen
prediction = model.predict(image[None, ...])
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
return confidences
# Gradio Interface definieren
input_image = gr.Image()
output_text = gr.Textbox(label="Predicted Pokemon")
iface = gr.Interface(
fn=predict_pokemon,
inputs=input_image,
outputs=gr.Label(),
title="Pokémon Classifier",
description="Upload an image of a Pokémon and see the model classify it!"
)
# Starte die Gradio-Schnittstelle
iface.launch()