heinini2 commited on
Commit
5032fa6
1 Parent(s): 278e634

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -6,6 +6,7 @@ import numpy as np
6
  # Lade dein Modell
7
  model_path = "pokemon-model.keras"
8
  model = tf.keras.models.load_model(model_path)
 
9
 
10
  # Klassen Labels für deine vier Pokémon
11
  labels = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree']
@@ -15,14 +16,14 @@ def predict_pokemon(image):
15
  # Bildvorverarbeitung
16
  image = Image.fromarray(image.astype('uint8'), 'RGB')
17
  image = image.resize((150, 150)) # Anpassen der Bildgröße an das Modell
18
- image = np.array(image) / 255.0 # Normalisieren der Pixelwerte
19
-
 
20
  # Bild in das Modell einspeisen und Vorhersage treffen
21
- prediction = model.predict(np.expand_dims(image, axis=0))
22
- confidences = {labels[i]: float(np.round(prediction[0][i], 2)) for i in range(len(labels))}
23
  return confidences
24
 
25
-
26
  # Gradio Interface definieren
27
  input_image = gr.Image()
28
  output_text = gr.Textbox(label="Predicted Pokemon")
 
6
  # Lade dein Modell
7
  model_path = "pokemon-model.keras"
8
  model = tf.keras.models.load_model(model_path)
9
+ model.summary() # Check if the model architecture loaded matches the expected one
10
 
11
  # Klassen Labels für deine vier Pokémon
12
  labels = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree']
 
16
  # Bildvorverarbeitung
17
  image = Image.fromarray(image.astype('uint8'), 'RGB')
18
  image = image.resize((150, 150)) # Anpassen der Bildgröße an das Modell
19
+ image = np.array(image) # Normalisieren der Pixelwerte
20
+ print(image.shape)
21
+
22
  # Bild in das Modell einspeisen und Vorhersage treffen
23
+ prediction = model.predict(image[None, ...])
24
+ confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))} return confidences
25
  return confidences
26
 
 
27
  # Gradio Interface definieren
28
  input_image = gr.Image()
29
  output_text = gr.Textbox(label="Predicted Pokemon")