import gradio as gr from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array, load_img import numpy as np # Modell laden model = load_model('pokemon-model.keras') def classify_image(image): image = image.resize((224, 224)) # passende Größe für das Modell image = img_to_array(image) # Bild in Array umwandeln image = np.expand_dims(image, axis=0) # Dimension hinzufügen image /= 255.0 # Normalisierung prediction = model.predict(image) # Vorhersage vom Modell classes = ['Squirtle', 'Pikachu', 'Charizard', 'Butterfree'] # Klassen return {classes[i]: float(prediction[0][i]) for i in range(4)} # Wahrscheinlichkeiten zurückgeben iface = gr.Interface( classify_image, gr.inputs.Image(shape=(224, 224)), gr.outputs.Label(num_top_classes=4), title="Pokémon Classifier", description="Upload an image of a Pokémon and see the model classify it!" ) iface.launch()