Spaces:
Sleeping
Sleeping
heisenberg3376
commited on
Commit
•
f7477a5
1
Parent(s):
549c61b
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the image classification pipeline from Hugging Face Transformers
|
5 |
+
pipe = pipeline("image-classification", model="heisenberg3376/vit-base-food-items-v1")
|
6 |
+
|
7 |
+
# Define the Gradio interface function
|
8 |
+
def classify_image(input_image):
|
9 |
+
# Perform classification on the input image
|
10 |
+
results = pipe(input_image)
|
11 |
+
|
12 |
+
# Prepare the output string with all predictions
|
13 |
+
output_str = "Predictions:\n"
|
14 |
+
for result in results:
|
15 |
+
output_str += f"{result['label']}: {result['score']:.4f}\n"
|
16 |
+
|
17 |
+
# Return the concatenated string of predictions
|
18 |
+
return output_str
|
19 |
+
|
20 |
+
# Create a Gradio interface
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=classify_image,
|
23 |
+
inputs=gr.inputs.Image(type="pil", label="Upload an image"),
|
24 |
+
outputs="text",
|
25 |
+
title="Image Classification",
|
26 |
+
description="Classify food items in images using heisenberg3376/vit-base-food-items-v1"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the Gradio interface
|
30 |
+
iface.launch()
|