Switch to Mistral model
Browse files
README.md
CHANGED
@@ -8,6 +8,9 @@ sdk_version: 3.23.0
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
duplicated_from: joaogante/transformers_streaming
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Environment
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
duplicated_from: joaogante/transformers_streaming
|
11 |
+
|
12 |
+
preload_from_hub:
|
13 |
+
- helenai/mistralai-Mistral-7B-Instruct-v0.2-ov
|
14 |
---
|
15 |
|
16 |
# Environment
|
app.py
CHANGED
@@ -3,23 +3,24 @@ import subprocess
|
|
3 |
from threading import Thread
|
4 |
|
5 |
import gradio as gr
|
6 |
-
from optimum.intel.openvino import
|
7 |
from transformers import AutoTokenizer, TextIteratorStreamer
|
8 |
|
9 |
result = subprocess.run(["lscpu"], text=True, capture_output=True)
|
10 |
pprint.pprint(result.stdout)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model_id = f"helenai/{original_model_id.replace('/','-')}-ov"
|
15 |
|
16 |
-
model =
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
18 |
|
19 |
|
20 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
21 |
-
#
|
22 |
-
|
|
|
|
|
23 |
|
24 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
25 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
@@ -65,7 +66,6 @@ with gr.Blocks() as demo:
|
|
65 |
with gr.Row():
|
66 |
with gr.Column(scale=4):
|
67 |
user_text = gr.Textbox(
|
68 |
-
placeholder="Write an email about an alpaca that likes flan",
|
69 |
label="User input",
|
70 |
)
|
71 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
@@ -117,3 +117,5 @@ with gr.Blocks() as demo:
|
|
117 |
)
|
118 |
|
119 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|
|
|
|
|
|
3 |
from threading import Thread
|
4 |
|
5 |
import gradio as gr
|
6 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
7 |
from transformers import AutoTokenizer, TextIteratorStreamer
|
8 |
|
9 |
result = subprocess.run(["lscpu"], text=True, capture_output=True)
|
10 |
pprint.pprint(result.stdout)
|
11 |
|
12 |
+
original_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
13 |
+
model_id = "helenai/mistralai-Mistral-7B-Instruct-v0.2-ov"
|
|
|
14 |
|
15 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
|
18 |
|
19 |
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
20 |
+
# message = [{"role": "user", "content": "You are a helpful assistant"}, {"role": "assistant", "content": "How can I help?"}, {"role":"user", "content":user_text}]
|
21 |
+
message = [{"role": "user", "content": user_text}]
|
22 |
+
|
23 |
+
model_inputs = tokenizer.apply_chat_template(message, return_tensors="pt", return_dict=True)
|
24 |
|
25 |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
26 |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
|
|
|
66 |
with gr.Row():
|
67 |
with gr.Column(scale=4):
|
68 |
user_text = gr.Textbox(
|
|
|
69 |
label="User input",
|
70 |
)
|
71 |
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
|
|
|
117 |
)
|
118 |
|
119 |
demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0")
|
120 |
+
# For local use:
|
121 |
+
# demo.launch(server_name="0.0.0.0")
|